Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neurochem Res ; 40(3): 514-23, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25492133

ABSTRACT

Metformin (Met), which is an insulin-sensitizer, decreases insulin resistance and fasting insulin levels. The precise molecular target of Met is unknown; however, several reports have shown an inhibitory effect on mitochondrial complex I of the electron transport chain (ETC), which is a related site for reactive oxygen species production. In addition to peripheral effects, Met is capable of crossing the blood-brain barrier, thus regulating the central mechanism involved in appetite control. The present study explores the effects of intracerebroventricular (i.c.v.) infusion of Met on ROS production on brain, insulin sensitivity and metabolic and oxidative stress outcomes in CF1 mice. Metformin (Met 50 and 100 µg) was injected i.c.v. in mice daily for 7 days; the brain mitochondrial H2O2 production, food intake, body weight and fat pads were evaluated. The basal production of H2O2 of isolated mitochondria from the hippocampus and hypothalamus was significantly increased by Met (100 µg). There was increased peripheral sensitivity to insulin (Met 100 µg) and glucose tolerance tests (Met 50 and 100 µg). Moreover, Met decreased food intake, body weight, body temperature, fat pads and survival rates. Additionally, Met (1, 4 or 10 mM) decreased mitochondrial viability and increased the production of H2O2 in neuronal cell cultures. In summary, our data indicate that a high dose of Met injected directly into the brain has remarkable neurotoxic effects, as evidenced by hypothermia, hypoglycemia, disrupted mitochondrial ETC flux and decreased survival rate.


Subject(s)
Body Weight/drug effects , Hypoglycemia/mortality , Metformin/administration & dosage , Metformin/toxicity , Oxidative Stress/drug effects , Animals , Body Weight/physiology , Cells, Cultured , Hypoglycemia/chemically induced , Hypoglycemia/metabolism , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/toxicity , Infusions, Intraventricular , Male , Mice , Oxidative Stress/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Survival Rate/trends
2.
Exp Neurol ; 247: 66-72, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23499835

ABSTRACT

The mitochondrial electron transport system (ETS) is a main source of cellular ROS, including hydrogen peroxide (H2O2). The production of H2O2 also involves the mitochondrial membrane potential (ΔΨm) and oxygen consumption. Impaired insulin signaling causes oxidative neuronal damage and places the brain at risk of neurodegeneration. We evaluated whether insulin signaling cross-talks with ETS components (complexes I and F0F1ATP synthase) and ΔΨm to regulate mitochondrial H2O2 production, in tissue preparations from rat brain. Insulin (50 to 100 ng/mL) decreased H2O2 production in synaptosomal preparations in high Na(+) buffer (polarized state), stimulated by glucose and pyruvate, without affecting the oxygen consumption. In addition, insulin (10 to 100 ng/mL) decreased H2O2 production induced by succinate in synaptosomes in high K(+) (depolarized state), whereas wortmannin and LY290042, inhibitors of the PI3K pathway, reversed this effect; heated insulin had no effect. Insulin decreased H2O2 production when complexes I and F0F1ATP synthase were inhibited by rotenone and oligomycin respectively suggesting a target effect on complex III. Also, insulin prevented the generation of maximum level of ∆Ψm induced by succinate. The PI3K inhibitors and heated insulin maintained the maximum level of ∆Ψm induced by succinate in synaptosomes in a depolarized state. Similarly, insulin decreased ROS production in neuronal cultures. In mitochondrial preparations, insulin neither modulated H2O2 production or oxygen consumption. In conclusion, the normal downstream insulin receptor signaling is necessary to regulate complex III of ETS avoiding the generation of maximal ∆Ψm and increased mitochondrial H2O2 production.


Subject(s)
Brain/ultrastructure , Hydrogen Peroxide/pharmacology , Insulin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Oxidants/pharmacology , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Cerebral Cortex/cytology , Dose-Response Relationship, Drug , Electron Transport , Embryo, Mammalian , Gene Expression Regulation/drug effects , Glutamic Acid/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Neurons/drug effects , Neurons/metabolism , Oxygen Consumption , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Synaptosomes/drug effects , Time Factors
3.
Hippocampus ; 21(10): 1082-92, 2011 Oct.
Article in English | MEDLINE | ID: mdl-20824731

ABSTRACT

Increasing evidence indicates that physical exercise induces adaptations at the cellular, molecular, and systemic levels that positively affect the brain. Insulin plays important functional roles within the brain that are mediated by insulin-receptor (IR) signaling. In the hippocampus, insulin improves synaptic plasticity, memory formation, and learning via direct modulation of GABAergic and glutamatergic receptors. Separately, physical exercise and central insulin administration exert relevant roles in cognitive function. We here use CF1 mice to investigate (i) the effects of voluntary exercise on hippocampal insulin signaling and memory performance and (ii) whether central insulin administration alters the effects of exercise on hippocampal insulin signaling and memory performance. Adult mice performed 30 days of voluntary exercise on running wheel and afterward both, sedentary and exercised groups, received intracerebroventricular (icv) injection of saline or insulin (0.5-5 mU). Memory performance was assessed using the inhibitory avoidance and water maze tasks. Hippocampal tissue was measured for [U-(14)C] glucose oxidation and the immunocontent of insulin receptor/signaling (IR, pTyr, pAktser473). Additionally, the phosphorylation of the glutamate NMDA receptor NR2B subunit and the capacity of glutamate uptake were measured, and immunohistochemistry was used to determine glial reactivity. Exercise significantly increased insulin peripheral sensitivity, spatial learning, and hippocampal IR/pTyrIR/pAktser473 immunocontent. Glucose oxidation, glutamate uptake, and astrocyte number also increased relative to the sedentary group. In both memory tasks, 5 mU icv insulin produced amnesia but only in exercised animals. This amnesia was associated a rapid (15 min) and persistent (24 h) increase in hippocampal pNR2B immunocontent that paralleled the increase in glial reactivity. In conclusion, physical exercise thus increased hippocampal insulin signaling and improved water maze performance. Overstimulation of insulin signaling in exercised animals, however, via icv administration impaired behavioral performance. This effect was likely the result of aberrant phosphorylation of the NR2B subunit.


Subject(s)
Hippocampus , Insulin/administration & dosage , Physical Conditioning, Animal/physiology , Receptor, Insulin/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amnesia/physiopathology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Cognition/physiology , Glucose/metabolism , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Immunohistochemistry , Injections, Intraventricular , Insulin Resistance/physiology , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Memory/physiology , Mice , Neuroglia/metabolism , Phosphorylation , Signal Transduction/physiology
4.
Behav Pharmacol ; 21(7): 668-75, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20729714

ABSTRACT

Olanzapine and highly palatable diets can alter metabolism and brain function. We investigated the interaction of chronic treatment (4 months) with olanzapine and a cafeteria diet on metabolic parameters, memory tasks (spatial and aversive), the elevated plus maze and locomotor activity induced by d-amphetamine. Male Wistar rats were separated into the following groups: standard diet vehicle, standard diet and olanzapine, cafeteria diet vehicle and cafeteria diet and olanzapine. Olanzapine was administered in the drinking water (approximately 1.5 mg/kg/day), and after 3 days of treatment, the rats exhibited an expected anxiolytic effect and reduced amphetamine-induced hyperlocomotion. After 4 months of treatment, cafeteria diet vehicle and cafeteria diet olanzapine rats exhibited an increased body weight and heavier fat pads compared with the standard diet groups. Olanzapine increased only the epididymal and mesenteric fat pads. The cafeteria diet and olanzapine group showed greater glucose intolerance compared with all other groups. The cafeteria diet altered the effects of chronic olanzapine on the performance in the water maze and inhibitory avoidance tasks. Chronic olanzapine treatment failed to affect amphetamine-induced locomotion and to produce anxiolytic effects in the elevated plus maze task, regardless of the diet. Our results suggest that chronic olanzapine caused an increase in fat pads, which is putatively involved in the etiology of many metabolic diseases. Rats on the cafeteria diet were overweight and exhibited glucose intolerance. We did not observe these effects with olanzapine treatment with the standard diet. Moreover, the chronic treatment regimen caused tolerance to the antipsychotic and anxiolytic effects of olanzapine and seemed to potentiate some of the metabolic effects of the cafeteria diet. The cafeteria diet also modified the effects of chronic treatment with olanzapine on cognitive tasks, which may represent an undesirable effect of poor diets in psychiatric patients.


Subject(s)
Behavior, Animal , Benzodiazepines , Fast Foods , Glucose Intolerance , Obesity , Amphetamine/pharmacology , Animals , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/adverse effects , Behavior, Animal/drug effects , Benzodiazepines/administration & dosage , Benzodiazepines/adverse effects , Diet/psychology , Dietary Fats/adverse effects , Eating/drug effects , Eating/psychology , Fast Foods/adverse effects , Glucose Intolerance/etiology , Glucose Intolerance/metabolism , Humans , Male , Maze Learning , Motor Activity/drug effects , Obesity/etiology , Obesity/metabolism , Olanzapine , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...