Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 51: 128310, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34416377

ABSTRACT

In this article we describe the identification of unprecedented ATP-competitive ChoKα inhibitors starting from initial hit NMS-P830 that binds to ChoKα in an ATP concentration-dependent manner. This result is confirmed by the co-crystal structure of NMS-P830 in complex with Δ75-ChoKα. NMS-P830 is able to inhibit ChoKα in cells resulting in the reduction of intracellular phosphocholine formation. A structure-based medicinal chemistry program resulted in the identification of selective compounds that have good biochemical activity, solubility and metabolic stability and are suitable for further optimization. The ChoKα inhibitors disclosed in this article demonstrate for the first time the possibility to inhibit ChoKα with ATP-competitive compounds.


Subject(s)
Adenosine Triphosphate/antagonists & inhibitors , Choline Kinase/antagonists & inhibitors , Cyclohexanes/pharmacology , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Choline Kinase/metabolism , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem ; 23(10): 2387-407, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25882525

ABSTRACT

Compound 1, a hit from the screening of our chemical collection displaying activity against JAK2, was deconstructed for SAR analysis into three regions, which were explored. A series of compounds was synthesized leading to the identification of the potent and orally bioavailable JAK2 inhibitor 16 (NMS-P830), which showed an encouraging tumour growth inhibition in SET-2 xenograft tumour model, with evidence for JAK2 pathway suppression demonstrated by in vivo pharmacodynamic effects.


Subject(s)
Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Janus Kinase 2/antagonists & inhibitors , Leukemia, Megakaryoblastic, Acute/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Pyrroles/chemical synthesis , Amides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Expression , High-Throughput Screening Assays , Humans , Janus Kinase 2/chemistry , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukemia, Megakaryoblastic, Acute/enzymology , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/pathology , Megakaryocyte Progenitor Cells/drug effects , Megakaryocyte Progenitor Cells/enzymology , Megakaryocyte Progenitor Cells/pathology , Mice , Mice, Nude , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem ; 22(17): 4998-5012, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25009002

ABSTRACT

We report herein the discovery, structure guided design, synthesis and biological evaluation of a novel class of JAK2 inhibitors. Optimization of the series led to the identification of the potent and orally bioavailable JAK2 inhibitor 28 (NMS-P953). Compound 28 displayed significant tumour growth inhibition in SET-2 xenograft tumour model, with a mechanism of action confirmed in vivo by typical modulation of known biomarkers, and with a favourable pharmacokinetic and safety profile.


Subject(s)
Antineoplastic Agents/pharmacology , Janus Kinase 2/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Janus Kinase 2/metabolism , Mice , Mice, SCID , Models, Molecular , Molecular Structure , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...