Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(5-1): 054906, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115532

ABSTRACT

It is well known that energy dissipation and finite size can deeply affect the dynamics of granular matter, often making usual hydrodynamic approaches problematic. Here we report on the experimental investigation of a small model system, made of ten beads constrained into a 1D geometry by a narrow vertical pipe and shaken at the base by a piston excited by a periodic wave. Recording the beads motion with a high frame rate camera allows to investigate in detail the microscopic dynamics and test hydrodynamic and kinetic models. Varying the energy, we explore different regimes from fully fluidized to the edge of condensation, observing good hydrodynamic behavior down to the edge of fluidization, despite the small system size. Density and temperature fields for different system energies can be collapsed by suitable space and time rescaling, and the expected constitutive equation holds very well when the particle diameter is considered. At the same time, the balance between dissipated and fed energy is not well described by commonly adopted dependence due to the up-down symmetry breaking. Our observations, supported by the measured particle velocity distributions, show a different phenomenological temperature dependence, which yields equation solutions in agreement with experimental results.

2.
Phys Rev Lett ; 131(7): 078201, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656864

ABSTRACT

The characterization of the distance from equilibrium is a debated problem in particular in the treatment of experimental signals. If the signal is a one-dimensional time series, such a goal becomes challenging. A paradigmatic example is the angular diffusion of a rotator immersed in a vibro-fluidized granular gas. Here, we experimentally observe that the rotator's angular velocity exhibits significant differences with respect to an equilibrium process. Exploiting the presence of two relevant timescales and non-Gaussian velocity increments, we quantify the breakdown of time-reversal asymmetry, which would vanish in the case of a 1D Gaussian process. We deduce a new model for the massive probe, with two linearly coupled variables, incorporating both Gaussian and Poissonian noise, the latter motivated by the rarefied collisions with the granular bath particles. Our model reproduces the experiment in a range of densities, from dilute to moderately dense, with a meaningful dependence of the parameters on the density. We believe the framework proposed here opens the way to a more consistent and meaningful treatment of out-of-equilibrium and dissipative systems.

3.
Sci Rep ; 9(1): 16962, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31740801

ABSTRACT

Many materials are produced, processed and stored as grains, while granularity of matter can be crucial in triggering potentially catastrophic geological events like landslides, avalanches and earthquakes. The response of grain assemblies to shear stress is therefore of utmost relevance to both human and natural environment. At low shear rate a granular system flows intermittently by distinct avalanches. In such state the avalanche velocity in time is expected to follow a symmetrical and universal average behavior, whose dependence on the slip size reduces to a scale factor. Analyzing data from long lasting experiments, we observe a breakdown of this scaling: While in short slips velocity shows indeed a self-similar and symmetric profile, it does not in long slips. The investigation of frictional response in these different regimes evidences that this breakdown can be traced back to the onset of a friction weakening, which is of dynamical origin and can amplify instabilities exactly in this critical state, the most frequent state for natural hazards.

4.
Phys Rev Lett ; 123(3): 038002, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31386474

ABSTRACT

Recent experiments with rotational diffusion of a probe in a vibrated granular media revealed a rich scenario, ranging from a dilute gas to a dense liquid with cage effects and an unexpected superdiffusive behavior at large times. Here we set up a simulation that reproduces quantitatively the experimental observations and allows us to investigate the properties of the host granular medium, a task not feasible in the experiment. We discover a persistent collective rotational mode which emerges at a high density and a low granular temperature: a macroscopic fraction of the medium slowly rotates, randomly switching direction after very long times. Such a rotational mode of the host medium is the origin of the probe's superdiffusion. Collective motion is accompanied by a kind of dynamical heterogeneity at intermediate times (in the cage stage) followed by a strong reduction of fluctuations at late times, when superdiffusion sets in.

5.
Phys Rev Lett ; 120(13): 138001, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694230

ABSTRACT

We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency, we observe a reentrant transition, as a jammed system first enters a fluidized state, where the vane rotates with high constant velocity, and then returns to a frictional state, where the vane velocity is much lower. While the fluidization frequency is material independent, the viscosity recovery frequency shows a clear dependence on the material that we rationalize by relating this frequency to the balance between dissipative and inertial forces in the system. Molecular dynamics simulations well reproduce the experimental data, confirming the suggested theoretical picture.

6.
Article in English | MEDLINE | ID: mdl-23679355

ABSTRACT

The effect of Coulomb friction is studied in the framework of collisional ratchets. It turns out that the average drift of these devices can be expressed as the combination of a term related to the lack of equipartition between the probe and the surrounding bath, and a term featuring the average frictional force. We illustrate this general result in the asymmetric Rayleigh piston, showing how Coulomb friction can induce a ratchet effect in a Brownian particle in contact with an equilibrium bath. An explicit analytical expression for the average velocity of the piston is obtained in the rare collision limit. Numerical simulations support the analytical findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...