Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eurasian J Med ; 52(1): 52-56, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158315

ABSTRACT

OBJECTIVE: The pathological effects of internal exposure to manganese dioxide-56 (56MnO2) radioisotope particles have been previously examined in rats. Here we further examine the effects of 56MnO2, focusing on changes in blood parameters. MATERIALS AND METHODS: Ten-week-old male Wistar rats were exposed to 3 doses of neutron-activated 56MnO2 powder, nonradioactive MnO2 powder, or external 60Co γ-rays (1 Gy, whole body). On days 3 and 61 postexposure, the animals were necropsied to measure organ weights and clinical blood parameters, including red blood cell and white blood cell counts; concentrations of calcium, phosphorus, potassium, and sodium; and levels of alanine aminotransferase (ALT), aspartate aminotransferase, amylase, creatinine, urea, total protein, albumin, triglycerides, high density lipoprotein, total cholesterol, and glucose. RESULTS: In the 56MnO2-exposed animals, accumulated doses were found to be highest in the gastrointestinal tract, followed by the skin and lungs, with whole-body doses ranging from 41 to 100 mGy. There were no 56MnO2 exposure-related changes in body weights or relative organ weights. The ALT level decreased on day 3 and then significantly increased on day 61 in the 56MnO2-exposed groups. There were no exposure-related changes in any other blood parameters. CONCLUSION: Although the internal doses were less than 100 mGy, internal exposure of 56MnO2 powder showed significant biological impacts.

2.
Radiat Environ Biophys ; 56(1): 47-54, 2017 03.
Article in English | MEDLINE | ID: mdl-28188481

ABSTRACT

There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were 24Na, 28Al, 31Si, 32P, 38Cl, 42K, 45Ca, 46Sc, 56Mn, 59Fe, 60Co, and 134Cs. The radionuclide 56Mn (T 1/2 = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to 56Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated 56Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured 56Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of this international multicenter study show that the internal irradiation due to incorporated 56Mn powder is highly inhomogeneous, and that the most irradiated organs of the experimental animals are: large intestine, small intestine, stomach, and lungs. Accumulated absorbed organ doses were 1.65, 1.33, 0.24, 0.10 Gy for large intestine, small intestine, stomach, and lungs, respectively. Other organs were irradiated at lower dose levels. These results will be useful for interpretation of the biological effects of internal exposure of experimental rats to powdered 56Mn as observed by Shichijo and coworkers.


Subject(s)
Manganese Compounds/chemistry , Manganese Compounds/metabolism , Neutrons , Oxides/chemistry , Oxides/metabolism , Radioisotopes , Animals , Powders , Radiation Dosage , Radioactivity , Radiometry , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...