Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(12): 6643-6647, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36920241

ABSTRACT

The complete biosynthetic pathways of the potent antifungals AS2077715 (1) and funiculosin (2) are reconstituted and characterized. A five-enzyme cascade, including a multifunctional flavin-dependent monooxygenease and a repurposed O-methyltransferase, is involved to perform the dearomatization, stereoselective ring contraction, and redox transformations to morph a hydroxyphenyl-containing precursor into the unusual all-cis cyclopentanetetraol moiety.


Subject(s)
Antifungal Agents , Oxidation-Reduction
2.
Org Lett ; 23(20): 7819-7823, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34581588

ABSTRACT

4-Hydroxy-2-pyridone alkaloids have attracted attention for synthetic and biosynthetic studies due to their broad biological activities and structural diversity. Here, we elucidated the pathway and chemical logic of (-)-sambutoxin (1) biosynthesis. In particular, we uncovered the enzymatic origin of the tetrahydropyran moiety and showed that the p-hydroxyphenyl group is installed via a late-stage, P450-catalyzed oxidation of the phenylalanine-derived side chain rather than via a direct incorporation of tyrosine.


Subject(s)
Fusarium/chemistry , Mycotoxins/chemistry , Phenylalanine/chemistry , Pyridines/chemistry , Tyrosine/chemistry , Alkaloids/chemistry , Fusarium/metabolism , Molecular Structure , Oxidation-Reduction
3.
Nat Chem Biol ; 13(1): 46-53, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27820798

ABSTRACT

Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1ß but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.


Subject(s)
Boronic Acids/pharmacology , Caspase 1/metabolism , Dipeptidases/antagonists & inhibitors , Dipeptides/pharmacology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Leukocytes, Mononuclear/drug effects , Macrophages/drug effects , Pyroptosis/drug effects , Serine Proteinase Inhibitors/pharmacology , Animals , Boronic Acids/chemistry , Caspase 1/deficiency , Cell Line , Dipeptidases/metabolism , Dipeptides/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Dose-Response Relationship, Drug , Humans , Leukocytes, Mononuclear/enzymology , Leukocytes, Mononuclear/pathology , Macrophages/enzymology , Macrophages/pathology , Mice , Molecular Conformation , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...