Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiology (Reading) ; 162(12): 2029-2041, 2016 12.
Article in English | MEDLINE | ID: mdl-27902432

ABSTRACT

To facilitate development of synthetic biology tools for genetic engineering of cyanobacterial strains, we constructed pANS-derived self-replicating shuttle vectors that are based on the minimal replication element of the Synechococcus elongatus strain PCC 7942 plasmid pANS. To remove the possibility of homologous recombination events between the shuttle plasmids and the native pANS plasmid, the endogenous pANS was cured through plasmid incompatibility-mediated spontaneous loss. A heterologous toxin-antitoxin cassette was incorporated into the shuttle vectors for stable plasmid maintenance in the absence of antibiotic selection. The pANS-based shuttle vectors were shown to be able to carry a large 20 kb DNA fragment containing a gene cluster for biosynthesis of the omega-3 fatty acid eicosapentaenoic acid. Based on quantitative PCR analysis, there are about 10 copies of pANS and 3 copies of the large native plasmid pANL per chromosome in S. elongatus. Fluorescence levels of GFP reporter genes in a pANS-based vector were about 2.5-fold higher than when in pANL or integrated into the chromosome. In addition to its native host, pANS-based shuttle vectors were also found to replicate stably in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. There were about 27 copies of a pANS-based shuttle vector, 9 copies of a pDU1-based shuttle vector and 3 copies of an RSF1010-based shuttle vector per genome when these three plasmids co-existed in Anabaena cells. The endogenous pANS from our S. elongatus laboratory strain was cloned in Escherichia coli, re-sequenced and re-annotated to update previously published sequencing data.


Subject(s)
DNA Replication , Genetic Vectors/genetics , Plasmids/genetics , Synechococcus/genetics , Anabaena/genetics , Anabaena/metabolism , Genetic Vectors/metabolism , Plasmids/metabolism , Synechococcus/metabolism
2.
J Mol Biol ; 428(24 Pt B): 4882-4889, 2016 12 04.
Article in English | MEDLINE | ID: mdl-27771480

ABSTRACT

Large RNAs often utilize GNRA tetraloops as structural elements to stabilize the overall tertiary fold. These tetraloop-receptor (TR) interactions have a conserved geometry in which the tetraloop docks into the receptor at an angle of ~15° from the helix containing the receptor. Here, we show that the conserved GUAAY pentaloop found in domain III of group IIB1 introns participates in a novel class of RNA tertiary interaction with a geometry and mode of binding that are significantly different from that found in GNRA TR interactions. This pentaloop is highly conserved within the IIB1 class and interacts with the minor groove of the catalytic domain V. The base planes of the loop and receptor nucleotides are not coplanar and greatly deviate from standard A-minor motifs. The helical axis of the GUAAY stem loop diverges ~70° from the angle of insertion found in a typical GNRA TR interaction. Therefore, the loop architecture and insertion orientation are distinctive, with in vitro splicing data indicating that a GNRA tetraloop is incompatible at this position. The GUAAY pentaloop-receptor motif is also found in the structure of the eukaryotic thiamine pyrophosphate riboswitch in the context of a hexanucleotide loop sequence. We therefore propose, based on phylogenetic, structural, and biochemical data, that the GUAAY pentaloop-receptor interaction represents a novel structural motif that is present in multiple structured RNAs.


Subject(s)
Nucleic Acid Conformation , Phaeophyceae/chemistry , RNA/chemistry , RNA/metabolism , Phaeophyceae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...