Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 13(19): 2847-2853, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-29987887

ABSTRACT

This paper describes the peculiar co-assembly supramolecular polymerization behavior of triphenylamine trisamide derivatives with d-alanine (T-ala) or glycine (T-gly) moieties. Concentration and temperature-dependent circular dichroism (CD) spectroscopy revealed that the heating curves of co-assemblies obtained at various molar ratios of T-ala to T-gly exhibited two distinct transition temperatures. The first transition was due to the transformation from coiled helical bundles to single helical fibers without handedness. The second was due to a change from typical elongation to nucleation. These phenomena were confirmed by solvent-dependent decoiling of coiled helical structures and concentration-dependent morphological analysis. The two transitioning temperatures were dependent on the concentration of T-ala in the co-assemblies, suggesting that T-ala concentration plays an important role in the formation of coiled helical bundles. Our study demonstrated the first observation of two distinct transition temperatures in supramolecular polymers.

2.
Inorg Chem ; 57(1): 16-19, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29235860

ABSTRACT

We demonstrate the different origins of helical directions in polymeric gels derived from a hydrazone reaction in the absence and presence of Ni2+. The right-handed helicity of polymeric gels without Ni2+ originates from the enantiomeric d-form alanine moiety embedded in the building block. However, the right-handed helicity is inverted to a left-handed helicity upon the addition of Ni2+, indicating that added Ni2+ greatly affects the conformation of the polymeric gel by overcoming the influence of the enantiomer embedded in the building block on the helicity at the supramolecular level. More interestingly, the ratio of the right-toleft-handed helical fibers varies with the concentration of Ni2+, which converts from 100% right-handed helical fiber to 90% left-handed helical fiber. In the presence of Ni2+, both right- and left-handed helical fibers coexist at the supramolecular level. Some fibers also exhibit both right- and left-handed helicities in a single fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...