Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 66(1): 25-31, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29063625

ABSTRACT

Fruit extracts from different tissues (pulp, seed and peel) have shown antimicrobial and prebiotic activities related to their phenolic profile, although structure-specific evaluations have not been reported yet. The effect of five phenolic compounds (catechin and gallic, vanillic, ferulic and protocatechuic acids) identified in different fruits, particularly in mango, was evaluated on the growth of two probiotic (Lactobacillus rhamnosusGG ATCC 53103 and Lactobacillus acidophilusNRRLB 4495) and two pathogenic (Escherichia coli 0157:H7 ATCC 43890 and Salmonella enterica serovar Typhimurium ATCC 14028) bacteria. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of phenolic acids ranged from 15-20 mmol l-1 and 20-30 mmol l-1 against E. coli and S. Typhimurium, respectively. For catechin, the MIC and MBC were 35 mmol l-1 and >35 mmol l-1 against E. coli and S. Typhimurium, respectively. The presence of catechin and gallic, protocatechuic and vanillic acids in MRS broth without dextrose allowed the growth of lactobacilli. Catechin combined with protocatechuic or vanillic acid mildly allowed the growth of both probiotics. In conclusion, phenolic compounds can selectively inhibit the growth of pathogenic bacteria without affecting the viability of probiotics. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides relevant information about the effects of phenolic compounds commonly present in fruit and vegetables on the growth of probiotic and pathogenic bacteria. The compounds selectively allowed the growth of probiotic lactobacilli (Lactobacillus rhamnosus GG and Lactobacillus acidophilus) and inhibited pathogenic bacteria (Escherichia coli and Salmonella Typhimurium) at the same concentration (20 mmol l-1 ). These findings can contribute to the formulation of nutraceutical products, such as synbiotics, that can restore or maintain an optimal composition of human microbiota, potentially improving the overall health of the consumer.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Lactobacillus/drug effects , Phenols/pharmacology , Probiotics/analysis , Salmonella typhimurium/drug effects , Escherichia coli/growth & development , Humans , Hydroxybenzoates/pharmacology , Lactobacillus/growth & development , Phenols/chemistry , Salmonella typhimurium/growth & development
2.
Carbohydr Polym ; 92(1): 817-23, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23218371

ABSTRACT

Many studies have focused on seed decontamination but no one has been capable of eliminating all pathogenic bacteria. Two objectives were followed. First, to assess the in vitro antimicrobial activity of chitosan against: (a) Escherichia coli O157:H7, (b) native microflora of lettuce and (c) native microflora of lettuce seeds. Second, to evaluate the efficiency of chitosan on reducing microflora on lettuce seeds. The overall goal was to find a combination of contact time and chitosan concentration that reduces the microflora of lettuce seeds, without affecting germination. After treatment lettuce seeds presented no detectable microbial counts (<10(2)CFU/50 seeds) for all populations. Moreover, chitosan eliminated E. coli. Regardless of the reduction in the microbial load, a 90% reduction on germination makes imbibition with chitosan, uneconomical. Subsequent treatments identified the optimal treatment as 10 min contact with a 10 g/L chitosan solution, which maintained the highest germination percentage.


Subject(s)
Chitosan/pharmacology , Food Preservatives/pharmacology , Lactuca , Seeds , Chitosan/chemistry , Escherichia coli O157/drug effects , Food Microbiology , Germination/drug effects , Lactuca/drug effects , Lactuca/growth & development , Lactuca/microbiology , Medicago sativa/microbiology , Seeds/drug effects , Seeds/growth & development , Seeds/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...