Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 387(1): 15-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24043291

ABSTRACT

We previously reported the dual effects of nobiletin, a compound of polymethoxy flavones found in citrus fruits, on catecholamine secretion in cultured bovine adrenal medullary cells. Here, we report the effects of nobiletin on catecholamine synthesis in the cells. Nobiletin increased the synthesis of (14)C-catecholamines from [(14)C]tyrosine in a time (20-30 min)- and concentration (1.0-100 µM)-dependent manner. Nobiletin (10-100 µM) also activated tyrosine hydroxylase activity. The stimulatory effect of nobiletin on (14)C-catecholamine synthesis was not observed when extracellular Ca(2+) was not present in the incubation medium. Protein kinase inhibitors including H-89, an inhibitor of cyclic AMP-dependent protein kinase, and KN-93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinase II, suppressed the stimulatory effects of nobiletin on catecholamine synthesis as well as tyrosine hydroxylase activity. Nobiletin also induced the phosphorylation of tyrosine hydroxylase at Ser(19) and Ser(40). Nobiletin (1.0-100 µM) inhibited (14)C-catecholamine synthesis induced by acetylcholine. The present findings suggest that nobiletin, by itself, stimulates catecholamine synthesis through tyrosine hydroxylase phosphorylation at Ser(19) and Ser(40), whereas it inhibits catecholamine synthesis induced by acetylcholine in bovine adrenal medulla.


Subject(s)
Adrenal Medulla/metabolism , Catecholamines/biosynthesis , Citrus , Flavones/pharmacology , Serine/metabolism , Tyrosine 3-Monooxygenase/metabolism , Adrenal Medulla/cytology , Adrenal Medulla/drug effects , Animals , Cattle , Cells, Cultured , Dose-Response Relationship, Drug , Phosphorylation/drug effects , Phosphorylation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...