Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatrics ; 118(5): 1962-70, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17079567

ABSTRACT

OBJECTIVES: Head lice (Pediculus humanus capitis) are a major irritant to children and their parents around the world. Each year millions of children are infested with head lice, a condition known as pediculosis, which is responsible for tens of millions of lost school days. Head lice have evolved resistance to many of the currently used pediculicides; therefore, an effective new treatment for head lice is needed. In this study we examined the effectiveness of several methods that use hot air to kill head lice and their eggs. METHODS: We tested 6 different treatment methods on a total of 169 infested individuals. Each method delivers hot air to the scalp in a different way. We evaluated how well these methods kill lice and their eggs in situ. We also performed follow-up inspections to evaluate whether the sixth, most successful, method can cure head louse infestations. RESULTS: All 6 methods resulted in high egg mortality (> or = 88%), but they showed more-variable success in killing hatched lice. The most successful method, which used a custom-built machine called the LouseBuster, resulted in nearly 100% mortality of eggs and 80% mortality of hatched lice. The LouseBuster was effective in killing lice and their eggs when operated at a comfortable temperature, slightly cooler than a standard blow-dryer. Virtually all subjects were cured of head lice when examined 1 week after treatment with the LouseBuster. There were no adverse effects of treatment. CONCLUSIONS: Our findings demonstrate that one 30-minute application of hot air has the potential to eradicate head lice infestations. In summary, hot air is an effective, safe treatment and one to which lice are unlikely to evolve resistance.


Subject(s)
Hot Temperature/therapeutic use , Lice Infestations/therapy , Pediculus , Scalp Dermatoses/therapy , Adolescent , Adult , Animals , Child , Female , Humans , Male , Middle Aged
2.
Proc Natl Acad Sci U S A ; 100(26): 15694-9, 2003 Dec 23.
Article in English | MEDLINE | ID: mdl-14673114

ABSTRACT

Cospeciation occurs when interacting groups, such as hosts and parasites, speciate in tandem, generating congruent phylogenies. Cospeciation can be a neutral process in which parasites speciate merely because they are isolated on diverging host islands. Adaptive evolution may also play a role, but this has seldom been tested. We explored the adaptive basis of cospeciation by using a model system consisting of feather lice (Columbicola) and their pigeon and dove hosts (Columbiformes). We reconstructed phylogenies for both groups by using nuclear and mitochondrial DNA sequences. Both phylogenies were well resolved and well supported. Comparing these phylogenies revealed significant cospeciation and correlated evolution of host and parasite body size. The match in body size suggested that adaptive constraints limit the range of hosts lice can use. We tested this hypothesis by transferring lice among hosts of different sizes to simulate host switches. The results of these experiments showed that lice cannot establish viable populations on novel hosts that differ in size from the native host. To determine why size matters, we measured three components of louse fitness: attachment, feeding, and escape from host defense (preening). Lice could remain attached to, and feed on, hosts varying in size by an order of magnitude. However, they could not escape from preening on novel hosts that differed in size from the native host. Overall, our results suggest that host defense reinforces cospeciation in birds and feather lice by preventing lice from switching between hosts of different sizes.


Subject(s)
Columbidae/parasitology , Feathers/parasitology , Host-Parasite Interactions/genetics , Phthiraptera/pathogenicity , Animals , Body Constitution , Columbidae/anatomy & histology , Columbidae/classification , Molecular Sequence Data , Phthiraptera/anatomy & histology , Phthiraptera/classification , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...