Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
ACS Sens ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997236

ABSTRACT

High-throughput sensors are valuable tools for enabling massive, fast, and accurate diagnostics. To yield this type of electrochemical device in a simple and low-cost way, high-density arrays of vertical gold thin-film microelectrode-based sensors are demonstrated, leading to the rapid and serial interrogation of dozens of samples (10 µL droplets). Based on 16 working ultramicroelectrodes (UMEs) and 3 quasi-reference electrodes (QREs), a total of 48 sensors were engineered in a 3D crossbar arrangement that devised a low number of conductive lines. By exploiting this design, a compact chip (75 × 35 mm) can enable performing 16 sequential analyses without intersensor interferences by dropping one sample per UME finger. In practice, the electrical connection to the sensors was achieved by simply switching the contact among WE adjacent fingers. Importantly, a short analysis time was ensured by interrogating the UMEs with chronoamperometry or square wave voltammetry using a low-cost and hand-held one-channel potentiostat. As a proof of concept, the detection of Staphylococcus aureus in 15 samples was performed within 14 min (20 min incubation and 225 s reading). Additionally, the implementation of peptide-tethered immunosensors in these chips allowed the screening of COVID-19 from patient serum samples with 100% accuracy. Our experiments also revealed that dispensing additional droplets on the array (in certain patterns) results in the overestimation of the faradaic current signals, a phenomenon referred to as crosstalk. To address this interference, a set of analyses was conducted to design a corrective strategy that boosted the testing capacity by allowing using all on-chip sensors to address subsequent analyses (i.e., 48 samples simultaneously dispensed on the chip). This strategy only required grounding the unused rows of QRE and can be broadly adopted to develop high-throughput UME-based sensors. In practice, we could analyze 48 droplets (with [Fe(CN)6]4-) within ∼8 min using amperometry.

2.
Article in English | MEDLINE | ID: mdl-38537173

ABSTRACT

Nanostructured microelectrodes (NMEs) are an attractive alternative to yield sensitive bioassays in unprocessed samples. However, although valuable for different applications, nanoporous NMEs usually cannot boost the sensitivity of diffusion-limited analyses because of the enlarged Debye length within the nanopores, which reduces their accessibility. To circumvent this limitation, nanopore-free gold NMEs were electrodeposited from 45 µm SU-8 apertures, featuring nanoridged microspikes on a recessed surface of gold thin film while carrying interconnected crown-like and spiky structures along the edge of a SU-8 passivation layer. These structures were grown onto ultradense, vertical array chips that offer a promising strategy for translating reproducible, high-resolution, and cost-effective sensors into real-world applications. The NMEs yielded reproducible analyses, while machine learning allowed us to predict the analytical responses from NME electrodeposition data. By taking advantage of the high surface area and accessible structure of the NMEs, these structures provided a sensitivity for [Fe(CN)6]3-/4- that was 5.5× higher than that of bare WEs while also delivering a moderate antibiofouling property in undiluted human plasma. As a proof of concept, these electrodes were applied toward the fast (22 min) and simple determination of Staphylococcus aureus by monitoring the oxidation of [Fe(CN)6]4-, which acted as a cellular respiration rate redox reporter. The sensors also showed a wide dynamic range, spanning 5 orders of magnitude, and a calculated limit of detection of 0.2 CFU mL-1.

3.
Adv Healthc Mater ; 13(11): e2303509, 2024 04.
Article in English | MEDLINE | ID: mdl-38245830

ABSTRACT

Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.


Subject(s)
Biosensing Techniques , COVID-19 , Electrochemical Techniques , SARS-CoV-2 , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/blood , Electrodes , Antibodies, Viral/blood , Gold/chemistry , Immunoassay/methods , Immunoassay/instrumentation
4.
Nanoscale ; 14(18): 6811-6821, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35388391

ABSTRACT

Molybdenum disulfide (MoS2) is a very promising layered material for electrical, optical, and electrochemical applications because of its unique and outstanding properties. To unlock its full potential, among different preparation routes, electrochemistry has gain interest due to its simple, fast, scalable and simple instrumentation. However, obtaining large-area monolayer MoS2 that will enable the fabrication of novel electronic and electrochemical devices is still challenging. In this work, we reported a simple and fast electrochemical thinning process that results in ultra-large MoS2 down to monolayer on Au surfaces. The high affinity of MoS2 by Au surfaces enables the removal of bulk layers while preserving the first layer attached to the electrode. With a proper choice of the applied potential, more than 90% of the bulk regions can be removed from large-area MoS2 crystals, as confirmed by atomic force microscopy, photoluminescence, and Raman spectroscopy. We further address a set of contributions that are helpful to elucidate the features of MoS2, namely, the hyphenation of electrochemistry and optical microscopy for real-time observation of the thinning process that was revealed to occur from the edges to the center of the flake, an image treatment to estimate the thinning area and thinning rate, and the preparation of free-standing MoS2 layers by electrochemically thinning bulk flakes on microhole-structured Ni/Au meshes.

5.
ACS Sens ; 7(4): 1045-1057, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35417147

ABSTRACT

The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as ∼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.


Subject(s)
Nanoparticles , Nanostructures , Nanotechnology , Reproducibility of Results , Silicon Dioxide
6.
Talanta ; 243: 123327, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35240367

ABSTRACT

The diagnosis of cancer and other diseases using data from non-specific sensors - such as the electronic tongues (e-tongues) - is challenging owing to the lack of selectivity, in addition to the variability of biological samples. In this study, we demonstrate that impedance data obtained with an e-tongue in saliva samples can be used to diagnose cancer in the mouth. Data taken with a single-response microfluidic e-tongue applied to the saliva of 27 individuals were treated with multidimensional projection techniques and non-supervised and supervised machine learning algorithms. The distinction between healthy individuals and patients with cancer on the floor of mouth or oral cavity could only be made with supervised learning. Accuracy above 80% was obtained for the binary classification (YES or NO for cancer) using a Support Vector Machine (SVM) with radial basis function kernel and Random Forest. In the classification considering the type of cancer, the accuracy dropped to ca. 70%. The accuracy tended to increase when clinical information such as alcohol consumption was used in conjunction with the e-tongue data. With the random forest algorithm, the rules to explain the diagnosis could be identified using the concept of Multidimensional Calibration Space. Since the training of the machine learning algorithms is believed to be more efficient when the data of a larger number of patients are employed, the approach presented here is promising for computer-assisted diagnosis.


Subject(s)
Mouth Neoplasms , Saliva , Algorithms , Electronic Nose , Humans , Machine Learning , Mouth Neoplasms/diagnosis , Support Vector Machine
7.
Article in English | MEDLINE | ID: mdl-35311272

ABSTRACT

Impedimetric wearable sensors are a promising strategy for determining the loss of water content (LWC) from leaves because they can afford on-site and nondestructive quantification of cellular water from a single measurement. Because the water content is a key marker of leaf health, monitoring of the LWC can lend key insights into daily practice in precision agriculture, toxicity studies, and the development of agricultural inputs. Ongoing challenges with this monitoring are the on-leaf adhesion, compatibility, scalability, and reproducibility of the electrodes, especially when subjected to long-term measurements. This paper introduces a set of sensing material, technological, and data processing solutions that overwhelm such obstacles. Mass-production-suitable electrodes consisting of stand-alone Ni films obtained by well-established microfabrication methods or ecofriendly pyrolyzed paper enabled reproducible determination of the LWC from soy leaves with optimized sensibilities of 27.0 (Ni) and 17.5 kΩ %-1 (paper). The freestanding design of the Ni electrodes was further key to delivering high on-leaf adhesion and long-term compatibility. Their impedances remained unchanged under the action of wind at velocities of up to 2.00 m s-1, whereas X-ray nanoprobe fluorescence assays allowed us to confirm the Ni sensor compatibility by the monitoring of the soy leaf health in an electrode-exposed area. Both electrodes operated through direct transfer of the conductive materials on hairy soy leaves using an ordinary adhesive tape. We used a hand-held and low-power potentiostat with wireless connection to a smartphone to determine the LWC over 24 h. Impressively, a machine-learning model was able to convert the sensing responses into a simple mathematical equation that gauged the impairments on the water content at two temperatures (30 and 20 °C) with reduced root-mean-square errors (0.1% up to 0.3%). These data suggest broad applicability of the platform by enabling direct determination of the LWC from leaves even at variable temperatures. Overall, our findings may help to pave the way for translating "sense-act" technologies into practice toward the on-site and remote investigation of plant drought stress. These platforms can provide key information for aiding efficient data-driven management and guiding decision-making steps.

8.
Sci Rep ; 11(1): 23671, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880305

ABSTRACT

Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.

9.
ACS Sens ; 6(8): 3125-3132, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34399053

ABSTRACT

The sensing field has shed light on an urgent necessity for field-deployable, user-friendly, sensitive, and scalable platforms that are able to translate solutions into the real world. Here, we attempt to meet these requests by addressing a simple, low-cost, and fast electrochemical approach to provide sensitive assays that consist of dropping a small volume (0.5 µL) of off-the-shelf alcohols on pyrolyzed paper-based electrodes before adding the sample (150 µL). This method was applied in the detection of phosphate after the formation of the phosphomolybdate complex (250-860 nm in size). Prior drops of isopropanol allow for the fast penetration of the sample through pores of this hydrophobic paper, delivering hindrance-free redox reactions across increasing active areas and ultimately improving the detection performance. The sensitivity (-1.9 10-6 mA cm-2 ppb-1) and limit of detection (1.1 ppb) were improved, respectively, by factors of 33 and 99 over the data achieved without the addition of isopropanol, listing among the lowest values when compared with those results reported in the literature for phosphate (expressed in terms of the concentration of phosphorus). The approach enabled the quantification of this analyte in real samples with accuracies ranging from 87 to 103%. Furthermore, preliminary measurements demonstrated the successful performance of the electrodes with prior addition of other widely used alcohols, that is, methanol and ethanol. These results may extend the applicability of the method. In special, the scalability and eco-friendly character of the electrode fabrication combined with the sensitivity and simplicity of the analyses make the developed platform a promising alternative that may help to pave the way for a new generation of disposable sensors toward the daily monitoring of phosphate in water samples, thus contributing to prevent ecological side effects.


Subject(s)
Electrochemical Techniques , Phosphates , Capillary Action , Electrodes , Ethanol , Porosity
10.
ACS Appl Mater Interfaces ; 13(30): 35914-35923, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34309352

ABSTRACT

The monitoring of toxic inorganic gases and volatile organic compounds has brought the development of field-deployable, sensitive, and scalable sensors into focus. Here, we attempted to meet these requirements by using concurrently microhole-structured meshes as (i) a membrane for the gas diffusion extraction of an analyte from a donor sample and (ii) an electrode for the sensitive electrochemical determination of this target with the receptor electrolyte at rest. We used two types of meshes with complementary benefits, i.e., Ni mesh fabricated by robust, scalable, and well-established methods for manufacturing specific designs and stainless steel wire mesh (SSWM), which is commercially available at a low cost. The diffusion of gas (from a donor) was conducted in headspace mode, thus minimizing issues related to mesh fouling. When compared with the conventional polytetrafluoroethylene (PTFE) membrane, both the meshes (40 µm hole diameter) led to a higher amount of vapor collected into the electrolyte for subsequent detection. This inedited fashion produced a kind of reverse diffusion of the analyte dissolved into the electrolyte (receptor), i.e., from the electrode to bulk, which further enabled highly sensitive analyses. Using Ni mesh coated with Ni(OH)2 nanoparticles, the limit of detection reached for ethanol was 24-fold lower than the data attained by a platform with a PTFE membrane and placement of the electrode into electrolyte bulk. This system was applied in the determination of ethanol in complex samples related to the production of ethanol biofuel. It is noteworthy that a simple equation fitted by machine learning was able to provide accurate assays (accuracies from 97 to 102%) by overcoming matrix effect-related interferences on detection performance. Furthermore, preliminary measurements demonstrated the successful coating of the meshes with gold films as an alternative raw electrode material and the monitoring of HCl utilizing Au-coated SSWMs. These strategies extend the applicability of the platform that may help to develop valuable volatile sensing solutions.


Subject(s)
Electrochemical Techniques/instrumentation , Ethanol/analysis , Hydrochloric Acid/analysis , Membranes, Artificial , Nickel/chemistry , Stainless Steel/chemistry , Electrochemical Techniques/methods , Electrodes , Hydroxides/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Volatile Organic Compounds/analysis
11.
Lab Chip ; 21(15): 2971-2985, 2021 08 07.
Article in English | MEDLINE | ID: mdl-34137409

ABSTRACT

This paper addresses an important breakthrough in the high mass production of liposomes by microfluidics technology. We investigated the synthesis of liposomes using a high flow rate microfluidic device (HFR-MD) with a 3D-twisted cross-sectional microchannel to favor chaotic advection. A simple construction scaffold technique was used to manufacture the HFR-MD. The synthesis of liposomes combined the effects of high flow and high concentration of lipids, resulting in high mass productivity (2.27 g of lipid per h) which, to our knowledge, has never been registered by only one microdevice. We assessed the effects of the flow rate ratio (FRR), total flow rate (TFR), and lipid concentration on the liposome physicochemical properties. HFR-MD liposomes were monodisperse (0.074) with a size around 100 nm under the condition of an FRR of 1 (50% v/v ethanol) and TFR of 5 ml min-1 (expandable to 10 ml min-1). We demonstrated that the mixing conditions are not the only parameter controlling liposome synthesis using experimental and computational fluid dynamics analysis. A vacuum concentrator was used for ethanol removal, and there is no further modification after processing in accordance with the structural (SAXS) and morphological (cryo-TEM) analysis. Hence, the HFR-MD can be used to prepare nanoliposomes. It emerges as an innovative tool with high mass production.


Subject(s)
Liposomes , Cross-Sectional Studies , Particle Size , Scattering, Small Angle , X-Ray Diffraction
12.
Biophys J ; 120(8): 1443-1453, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33607085

ABSTRACT

Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device's internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ∼4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.


Subject(s)
Biofilms , Xylella , Bacterial Adhesion , Cell Adhesion , Xylem
13.
Nanotechnology ; 30(27): 275701, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30893653

ABSTRACT

Reduced graphene oxide (rGO) layers are known to be significantly conductive along the basal plane throughout delocalized sp2 domains. Defects present in rGO implies in disordered systems with numerous localized sites, resulting in a charge transport governed mainly by a 2D variable range hopping (VRH) mechanism. These characteristics are observed even in multilayered rGO since the through-plane conduction is expected to be insubstantial. Here, we report on the multilayer assembly of functionalized rGO quantum dots (GQDs) presenting 3D VRH transport that endows elevated charge carrier mobility, ca âˆ¼ 236 cm2 V-1 s-1. Polyelectrolyte-wrapped GQDs were assembled by layer-by-layer technique (LbL), ensuring molecular level thickness control for the formed nanostructures, along with the adjustment of the film transparency (up to 92% in the visible region). The small size and the random distribution of GQDs in the LbL structure are believed to overcome the translational disorder in multilayered films, contributing to a 3D interlayer conduction that enhances the electronic properties. Such high-mobility, transparency-tunable films assembled by a cost-effective method possess interesting features and wide applicability in optoelectronics.

14.
Anal Chem ; 90(21): 12377-12384, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30222327

ABSTRACT

This technical note describes a new microfluidic sensor that combines low-cost (USD $0.97) with rapid fabrication and user-friendly, fast, sensitive, and accurate quantification of a breast cancer biomarker. The electrodes consisted of cost-effective bare stainless-steel capillaries, whose mass production is already well-established. These capillaries were used as received, without any surface modification. Microfluidic chips containing electrical double-layer capillary capacitors (µEDLC) were obtained by a cleanroom-free prototyping that allows the fabrication of dozens to hundreds of chips in 1 h. This sensor provided the successful quantification of CA 15-3, a biomarker protein for breast cancer, in serum samples from cancer patients. Antibody-anchored magnetic beads were utilized for immunocapture of the marker, and then, water was added to dilute the protein. Next, the CA 15-3 detection (<2 min) was made without using redox probes, antibody on electrode (sandwich immunoassay), or signal amplification strategies. In addition, the capacitance tests eliminated external pumping systems and precise volumetric sampling steps, as well as presented low sample volume (5 µL) and high sensitivity using bare capillaries in a new design for double-layer capacitors. The achieved limit-of-detection (92.0 µU mL-1) is lower than that of most methods reported in the literature for CA 15-3, which are based on nanostructured electrodes. The data shown in this technical note support the potential of the µEDLC toward breast cancer diagnosis even at early stages. We believe that accurate analyses using a simple sample pretreatment such as magnetic field-assisted immunocapture and cost-effective bare electrodes can be extended to quantify other cancer biomarkers and even biomolecules by changing the biorecognition element.


Subject(s)
Biomarkers, Tumor/analysis , Biosensing Techniques/economics , Breast Neoplasms/diagnostic imaging , Electrochemical Techniques/economics , Microfluidic Analytical Techniques/economics , Mucin-1/analysis , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrodes , Female , Humans , Microfluidic Analytical Techniques/instrumentation
15.
Nanotechnology ; 29(50): 505703, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30215613

ABSTRACT

The unique electronic, mechanical and optical properties of graphene make it a remarkable 2D material, widely explored in a plethora of applications. However, graphene zero-bandgap and the production of defect-free pristine graphene in large areas still limit some applications. To circumvent these issues, graphene-derived 2D materials have arisen as attractive candidates for low-dimensional systems, which requires a better comprehension of their properties. Here, we report a detailed investigation of the conduction mechanisms of two functionalized reduced graphene oxides (rGOs) nanoplatelets, named GPAH and GPSS. The functionalized rGO nanoplatelets were bottom-up assembled via the layer-by-layer technique, enabling molecular-level thickness control of nanostructures with well-defined composition and structure. For the reported multilayered GPAH/GPSS films the charge carriers followed Mott's law, presenting a typical conduction behavior of 2D systems described by the Poole-Frenkel model. The multilayered GPAH/GPSS nanostructure presented a conductivity of 10-4 S cm-1, optical bandgap of ∼3.3 eV and a relative dielectric permittivity (ε r) of 6.4. Temperature-dependent I-V measurements indicated a strong variation of ε r below the critical temperature (T C = 237 K), associated with a high dipole reorientation in the formed GPAH/GPSS nanostructure. All these characteristics make the GPAH/GPSS nanocomposite attractive for graphene-oriented applications, such as electronic devices.

16.
ACS Sens ; 3(3): 716-726, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29424231

ABSTRACT

Advances in nanomaterials have led to tremendous progress in different areas with the development of high performance and multifunctional platforms. However, a relevant gap remains in providing the mass-production of these nanomaterials with reproducible surfaces. Accordingly, the monitoring of such materials across their entire life cycle becomes mandatory to both industry and academy. In this paper, we use a microfluidic electronic tongue (e-tongue) as a user-friendly and cost-effective method to classify nanomaterials according to their surface chemistry. The chip relies on a new single response e-tongue with association of capacitors in parallel, which consisted of stainless steel microwires coated with SiO2, NiO2, Al2O3, and Fe2O3 thin films. Utilizing impedance spectroscopy and a multidimensional projection technique, the chip was sufficiently sensitive to distinguish silica nanoparticles and multiwalled carbon nanotubes dispersed in water in spite of the very small surface modifications induced by distinct functionalization and oxidation extents, respectively. Flow analyses were made acquiring the analytical readouts in a label-free mode. The device also allowed for multiplex monitoring in an unprecedented way to speed up the tests. Our goal is not to replace the traditional techniques of surface analysis, but rather propose the use of libraries from e-tongue data as benchmark for routine screening of modified nanomaterials in industry and academy.


Subject(s)
Electronic Nose , Microfluidic Analytical Techniques , Nanostructures/chemistry , Microfluidic Analytical Techniques/instrumentation , Particle Size , Surface Properties
17.
Nanotechnology ; 28(49): 495711, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-28985189

ABSTRACT

Graphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (µ) of 4.7 cm2 V-1 s-1 for the QDs and 34.7 cm2 V-1 s-1 for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high µ values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.

18.
ACS Sens ; 2(7): 1027-1034, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28750534

ABSTRACT

Electronic tongues (e-tongues) are promising analytical devices for a variety of applications to address the challenges of quality control in water monitoring and industries of foods, beverages, and pharmaceuticals. A crucial drawback in the current e-tongues is the need to recalibrate the device when one or more sensing units (usually with modified surface) are replaced. Another downside is the necessity to perform subsequent surface modifications and analyses to each of the diverse sensing units, undermining the simplicity and velocity of the method. These features have prevented widespread commercial use of the e-tongues. In this paper, we introduce a microfluidic e-tongue that overcomes all such limitations. The key principle of global selectivity of the e-tongue was achieved by recording only a single response, namely, the equivalent admittance spectrum of an association of resistors in parallel. Such resistors consisted of five nonfunctionalized stainless steel microwires (sensing units), which were short-circuited and coated with gold, platinum, nickel, iron, and aluminum oxide films. The microwires were inserted in a chip composed of a single piece of polydimethylsiloxane (PDMS). Using impedance spectroscopy, the e-tongue was successfully applied in classification of basic tastes at a concentration below the threshold for the human tongue. In addition, our chip allowed the distinction of various chemicals used in oil industry. Finally, our cleanroom-free prototyping allows the mass production of chips with easily replaceable and reproducible sensing units. Hence, one can now envisage the widespread dissemination of e-tongues with fast and reproducible data.

19.
ACS Appl Mater Interfaces ; 9(23): 19646-19652, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28481518

ABSTRACT

The fast growth of celiac disease diagnosis has sparked the production of gluten-free food and the search for reliable methods to detect gluten in foodstuff. In this paper, we report on a microfluidic electronic tongue (e-tongue) capable of detecting trace amounts of gliadin, a protein of gluten, down to 0.005 mg kg-1 in ethanol solutions, and distinguishing between gluten-free and gluten-containing foodstuff. In some cases, it is even possible to determine whether gluten-free foodstuff has been contaminated with gliadin. That was made possible with an e-tongue comprising four sensing units, three of which made of layer-by-layer (LbL) films of semiconducting polymers deposited onto gold interdigitated electrodes placed inside microchannels. Impedance spectroscopy was employed as the principle of detection, and the electrical capacitance data collected with the e-tongue were treated with information visualization techniques with feature selection for optimizing performance. The sensing units are disposable to avoid cross-contamination as gliadin adsorbs irreversibly onto the LbL films according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) analysis. Small amounts of material are required to produce the nanostructured films, however, and the e-tongue methodology is promising for low-cost, reliable detection of gliadin and other gluten constituents in foodstuff.


Subject(s)
Gliadin/analysis , Electronic Nose , Glutens , Microfluidics
20.
Anal Chem ; 89(6): 3460-3467, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28230979

ABSTRACT

In this study, we introduce a simple protocol to manufacture disposable, 3D-printed microfluidic systems for sample preparation of petroleum. This platform is produced with a consumer-grade 3D-printer, using fused deposition modeling. Successful incorporation of solid-phase extraction (SPE) to microchip was ensured by facile 3D element integration using proposed approach. This 3D-printed µSPE device was applied to challenging matrices in oil and gas industry, such as crude oil and oil-brine emulsions. Case studies investigated important limitations of nonsilicon and nonglass microchips, namely, resistance to nonpolar solvents and conservation of sample integrity. Microfluidic features remained fully functional even after prolonged exposure to nonpolar solvents (20 min). Also, 3D-printed µSPE devices enabled fast emulsion breaking and solvent deasphalting of petroleum, yielding high recovery values (98%) without compromising maltene integrity. Such finding was ascertained by high-resolution molecular analyses using comprehensive two-dimensional gas chromatography and gas chromatography/mass spectrometry by monitoring important biomarker classes, such as C10 demethylated terpanes, ααα-steranes, and monoaromatic steroids. 3D-Printed chips enabled faster and reliable preparation of maltenes by exhibiting a 10-fold reduction in sample processing time, compared to the reference method. Furthermore, polar (oxygen-, nitrogen-, and sulfur-containing) analytes found in low-concentrations were analyzed by Fourier transform ion cyclotron resonance mass spectrometry. Analysis results demonstrated that accurate characterization may be accomplished for most classes of polar compounds, except for asphaltenes, which exhibited lower recoveries (82%) due to irreversible adsorption to sorbent phase. Therefore, 3D-printing is a compelling alternative to existing microfabrication solutions, as robust devices were easy to prepare and operate.

SELECTION OF CITATIONS
SEARCH DETAIL
...