Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Hepatol Commun ; 4(6): 876-889, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32490323

ABSTRACT

Choline is an essential nutrient and a critical component of the membrane phospholipid phosphatidylcholine (PC), the neurotransmitter acetylcholine, while also contributing to the methylation pathway. In the liver specifically, PC is the major membrane constituent and can be synthesized by the cytidine diphosphate-choline or the phosphatidylethanolamine N-methyltransferase pathway. With the continuing global rise in the rates of obesity and nonalcoholic fatty liver disease, we sought to explore how excess fatty acids on primary hepatocytes and diet-induced obesity affect choline uptake and metabolism. Our results demonstrate that hepatocytes chronically treated with palmitate, but not oleate or a mixture, had decreased choline uptake, which was associated with lower choline incorporation into PC and lower expression of choline transport proteins. Interestingly, a reduction in the rate of degradation spared PC levels in response to palmitate when compared with control. The effects of palmitate treatment were independent of endoplasmic reticulum stress, which counterintuitively augmented choline transport and transporter expression. In a model of obesity-induced hepatic steatosis, male mice fed a 60% high-fat diet for 10 weeks had significantly diminished hepatic choline uptake compared with lean mice fed a control diet. Although the transcript and protein expression of various choline metabolic enzymes fluctuated slightly, we observed reduced protein expression of choline transporter-like 1 (CTL1) in the liver of mice fed a high-fat diet. Polysome profile analyses revealed that in livers of obese mice, the CTL1 transcript, despite being more abundant, was translated to a lesser extent compared with lean controls. Finally, human liver cells demonstrated a similar response to palmitate treatment. Conclusion: Our results suggest that the altered fatty acid milieu seen in obesity-induced fatty liver disease progression may adversely affect choline metabolism, potentially through CTL1, but that compensatory mechanisms work to maintain phospholipid homeostasis.

4.
Viruses ; 12(1)2020 01 16.
Article in English | MEDLINE | ID: mdl-31963173

ABSTRACT

Choline is an essential nutrient required for normal neuronal and muscular development, as well as homeostatic regulation of hepatic metabolism. In the liver, choline is incorporated into the main eukaryotic phospholipid, phosphatidylcholine (PC), and can enter one-carbon metabolism via mitochondrial oxidation. Hepatitis C virus (HCV) is a hepatotropic positive-strand RNA virus that similar to other positive-strand RNA viruses and can impact phospholipid metabolism. In the current study we sought to interrogate if HCV modulates markers of choline metabolism following in vitro infection, while subsequently assessing if the inhibition of choline uptake and metabolism upon concurrent HCV infection alters viral replication and infectivity. Additionally, we assessed whether these parameters were consistent between cells cultured in fetal bovine serum (FBS) or human serum (HS), conditions known to differentially affect in vitro HCV infection. We observed that choline transport in FBS- and HS-cultured Huh7.5 cells is facilitated by the intermediate affinity transporter, choline transporter-like family (CTL). HCV infection in FBS, but not HS-cultured cells diminished CTL1 transcript and protein expression at 24 h post-infection, which was associated with lower choline uptake and lower incorporation of choline into PC. No changes in other transporters were observed and at 96 h post-infection, all differences were normalized. Reciprocally, limiting the availability of choline for PC synthesis by use of a choline uptake inhibitor resulted in increased HCV replication at this early stage (24 h post-infection) in both FBS- and HS-cultured cells. Finally, in chronic infection (96 h post-infection), inhibiting choline uptake and metabolism significantly impaired the production of infectious virions. These results suggest that in addition to a known role of choline kinase, the transport of choline, potentially via CTL1, might also represent an important and regulated process during HCV infection.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Choline/metabolism , Hepacivirus/physiology , Liver Neoplasms/metabolism , Membrane Transport Proteins/metabolism , Antigens, CD/metabolism , Carcinoma, Hepatocellular/virology , Cell Line, Tumor , Culture Media/chemistry , Humans , Liver Neoplasms/virology , Organic Cation Transport Proteins/metabolism , Serum Albumin, Bovine/pharmacology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...