Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37836338

ABSTRACT

Alzheimer's disease is characterized by a combination of several neuropathological hallmarks, such as extracellular aggregates of beta amyloid (Aß). Numerous alternatives have been studied for inhibiting Aß aggregation but, at this time, there are no effective treatments available. Here, we developed the tri-component nanohybrid system AuNPs@POM@PEG based on gold nanoparticles (AuNPs) covered with polyoxometalates (POMs) and polyethylene glycol (PEG). In this work, AuNPs@POM@PEG demonstrated the inhibition of the formation of amyloid fibrils, showing a 75% decrease in Aß aggregation in vitro. As it is a potential candidate for the treatment of Alzheimer's disease, we evaluated the cytotoxicity of AuNPs@POM@PEG and its ability to cross the blood-brain barrier (BBB). We achieved a stable nanosystem that is non-cytotoxic below 2.5 nM to human neurovascular cells. The brain permeability of AuNPs@POM@PEG was analyzed in an in vitro microphysiological model of the BBB (BBB-on-a-chip), containing 3D human neurovascular cell co-cultures and microfluidics. The results show that AuNPs@POM@PEG was able to cross the brain endothelial barrier in the chip and demonstrated that POM does not affect the barrier integrity, giving the green light to further studies into this system as a nanotherapeutic.

2.
Nanomaterials (Basel) ; 13(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570559

ABSTRACT

The intersection between the field of hybrid materials and that of electrochemistry is a quickly expanding area. Hybrid combinations usually consist of two constituents, but new routes toward more complex and versatile electroactive hybrid designs are quickly emerging. The objective of the present work is to explore novel triple hybrid material integrating polyoxometalates (POMs), silver nanoparticles (Ag0 NPs), and activated carbon (AC) and to demonstrate its use as a hybrid electrode in a symmetric supercapacitor. The tri-component nanohybrid (AC/POM-Ag0 NPs) was fabricated through the combination of AC with pre-synthesized ∼27 nm POM-protected Ag0 NPs (POM-Ag0 NPs). The POM-Ag0 NPs were prepared using a green electrochemical method and characterized via UV-vis and IR spectroscopy, electron microscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Afterward, the AC/POM-Ag0 NPs ternary nanocomposite material was constructed and characterized. The electrochemical behavior of AC/POM-Ag0 NPs' modified electrodes reveal that the nanomaterial is electroactive and exhibits a moderately higher specific capacitance (81 F/g after 20 cycles) than bare AC electrodes (75 F/g) in a symmetrical supercapacitor configuration in the voltage range 0 to 0.75 V and 20 mV/s, demonstrating the potential use of this type of tri-component nanohybrid for electrochemical applications.

3.
Environ Sci Technol ; 55(5): 3021-3031, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33606515

ABSTRACT

The reactivity of iron(II/III) oxide surfaces may be influenced by their interaction with silica, which is ubiquitous in aquatic systems. Understanding the structure-reactivity relationships of Si-coated mineral surfaces is necessary to describe the complex surface behavior of nanoscale iron oxides. Here, we use Si-adsorption isotherms and Fourier transform infrared spectroscopy to analyze the sorption and polymerization of silica on slightly oxidized magnetite nanoparticles (15% maghemite and 85% magnetite, i.e., ∼2 maghemite surface layers), showing that Si adsorption follows a Langmuir isotherm up to 2 mM dissolved Si, where surface polymerization occurs. Furthermore, the effects of silica surface coatings on the redox-catalytic ability of magnetite are analyzed using selenium as a molecular probe. The results show that for partially oxidized nanoparticles and even under different Si surface coverages, electron transfer is still occurring. The results indicate anion exchange between silicate and the sorbed SeIV and SeVI. X-ray absorption near-edge structure analyses of the reacted Se indicate the formation of a mixed selenite/Se0 surface phase. We conclude that neither partial oxidation nor silica surface coatings block the sorption and redox-catalytic properties of magnetite nanoparticles, a result with important implications to assess the reactivity of mixed-valence phases in environmental settings.


Subject(s)
Ferrosoferric Oxide , Selenium , Adsorption , Catalysis , Ferric Compounds , Oxidation-Reduction , Silicon Dioxide
4.
Angew Chem Int Ed Engl ; 56(34): 10140-10144, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28586161

ABSTRACT

Dodecameric (Sn12 ) and hexameric topologies dominate monoalkyltin-oxo cluster chemistry. Their condensation, triggered by radiation exposure, recently produced unprecedented patterning performance in EUV lithography. A new cluster topology was crystallized from industrial n-BuSnOOH, and additional characterization techniques indicate other clusters are present. Single-crystal X-ray analysis reveals a ß-Keggin cluster, which is known but less common than other Keggin isomers in polyoxometalate and polyoxocation chemistry. The structure is formulated [NaO4 (BuSn)12 (OH)3 (O)9 (OCH3 )12 (Sn(H2 O)2 )] (ß-NaSn13 ). SAXS, NMR, and ESI MS differentiate ß-NaSn13 , Sn12 , and other clusters present in crude "n-BuSnOOH" and highlight the role of Na as a template for alkyltin Keggin clusters. Unlike other alkyltin clusters that are cationic, ß-NaSn13 is neutral. Consequently, it stands as a unique model system, absent of counterions, to study the transformation of clusters to films and nanopatterns.

5.
Dalton Trans ; 46(3): 947-955, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28009880

ABSTRACT

Rare earth oxide materials, including thin film coatings, are critically important in magnetic, luminescent and microelectric devices, and few substitutes have been discovered with comparable performance. Thin film coatings from solution are almost unknown for rare earth oxides, likely due to their high activity towards hydrolysis which yields poor quality thin films. The hexamer [Ln6(O)(OH)8(H2O)12(NO3)6]2+ is a rare example of a metal-oxo cluster isolated and stabilized without additional supporting organic ligands. Herein we report a new method for both the preparation and stabilization in non-aqueous media, which makes these clusters valuable precursors for solution-processed thin films. Solution characterization (NMR, small-angle X-ray scattering and Raman spectroscopy) in wet organic solvents indicated that the clusters evolve via a fragmentation and reaggregation process. This is especially true for hexamers of the smaller Ln3+-ions: the higher charge density yields higher hydration rates. This process produced an entirely new hexadecameric cluster formulated Y16O3(OH)24(NO3)18(OSMe2)16(OCMe2)2(H2O)4. The new structure represents an intermediate hydrolysis product on the pathway from hexanuclear clusters to metal oxyhydroxide bulk solid. DMSO solvent ligands displace aqua ligands on the cluster and likely explain the additional stability observed for these clusters in organic solvents. The enhanced cluster stability in DMF and DMSO also enables solution-processing methods to create high quality thin films.

6.
Angew Chem Int Ed Engl ; 55(21): 6221-4, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27094575

ABSTRACT

Selective dissolution of hafnium-peroxo-sulfate films in aqueous tetramethylammonium hydroxide enables extreme UV lithographic patterning of sub-10 nm HfO2 structures. Hafnium speciation under these basic conditions (pH>10), however, is unknown, as studies of hafnium aqueous chemistry have been limited to acid. Here, we report synthesis, crystal growth, and structural characterization of the first polynuclear hydroxo hafnium cluster isolated from base, [TMA]6 [Hf6 (µ-O2 )6 (µ-OH)6 (OH)12 ]⋅38 H2 O. The solution behavior of the cluster, including supramolecular assembly via hydrogen bonding is detailed via small-angle X-ray scattering (SAXS) and electrospray ionization mass spectrometry (ESI-MS). The study opens a new chapter in the aqueous chemistry of hafnium, exemplifying the concept of amphoteric clusters and informing a critical process in single-digit-nm lithography.

7.
Angew Chem Int Ed Engl ; 54(43): 12762-6, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26411337

ABSTRACT

The study of the aggregation of small molecules in solution induced by metallophilic interactions has been traditionally performed by spectroscopic methods through identification of chemical changes in the system. Herein we demonstrate the use of SAXS (small-angle X-ray scattering) to identify structures in solution, taking advantage of the excellent scattering intensity of heavy metals which have undergone association by metallophilic interactions. An analysis of the close relationship between solid-state and solution arrangements of a dynamic [Ag2 (bisNHC)2 ](2+) (NHC=N-heterocyclic carbene) system, and how they are complementary to each other, is reported.

8.
Inorg Chem ; 52(24): 14376-81, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24256419

ABSTRACT

The radical salt [ET]2[CuCl4] was obtained by chemical oxidation of bis(ethylenedithio)tetrathiafulvalene (ET) with the tetranuclear copper(II) halide cluster [Cu4OCl10](4-). Although a complex mixture of anions forms in solution during the redox reaction, only this product is obtained as large (>3 mm) single crystals. X-ray diffraction analysis determined that the ET molecules stack in the solid state forming dimerized 1D chains along the a axis, interleaved by [CuCl4](2-) anions. The ET dimers show very short S···S contacts (<3.41 Å). The physical properties are dominated by these intradimer ET interactions. The magnetic behavior shows antiferromagnetic coupling with a singlet-triplet gap >620 K (430 cm(-1)). The Cu(2+) (S = 1/2) centers are magnetically isolated and yield a narrow EPR line in the X-band at g = 2.01. The ET moieties are EPR silent.

9.
J Am Chem Soc ; 135(36): 13270-3, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23978044

ABSTRACT

The lack of an efficient, robust, and inexpensive water oxidation catalyst (WOC) is arguably the biggest challenge for the technological development of artificial photosynthesis devices. Here we report the catalytic activity found in a cobalt hexacyanoferrate (CoHCF) Prussian blue-type coordination polymer. This material is competitive with state-of-the-art metal oxides and exhibits an unparalleled long-term stability at neutral pH and ambient conditions, maintaining constant catalytic rates for weeks. In addition to its remarkable catalytic activity, CoHCF adds the typical properties of molecule-based materials: transparency to visible light, porosity, flexibility, processability, and low density. Such features make CoHCF a promising WOC candidate for advancement in solar fuels production.

10.
Inorg Chem ; 52(9): 4753-5, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23611185

ABSTRACT

An insoluble salt of the water oxidation catalyst [Co9(H2O)6(OH)3(HPO4)2(PW9O34)3](16-) (Co9) has been used to modify amorphous carbon paste electrodes. The catalytic activity of this polyoxometalate is maintained in the solid state. Good catalytic rates are reached at reasonable overpotentials. As a heterogeneous catalyst, Co9 shows a remarkable long-term stability in turnover conditions. The oxygen evolution rate remains constant for hours without the appearance of any sign of fatigue or decomposition in a large pH range, including acidic conditions, where metal oxides are unstable.

11.
Inorg Chem ; 51(21): 11707-15, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23078372

ABSTRACT

The polyanion of formula {Co(9)(H(2)O)(6)(OH)(3)(HPO(4))(2)(PW(9)O(34))(3)}(16-) (Co(9)) contains a central nonacobalt core held together by hydroxo and hydrogen phosphate bridges and supported by three lacunary Keggin-type polyphosphotungstate ligands. Our data demonstrate that Co(9) is a homogeneous catalyst for water oxidation. Catalytic water electrolysis on fluorine-doped tin oxide coated glass electrodes occurs at reasonable low overpotentials and rates when Co(9) is present in a sodium phosphate buffer solution at neutral pH. We carried out our experiments with an excess of 2,2'-bipyridyl as the chelating agent for free aqueous Co(II) ions, in order to avoid the formation of a cobalt oxide film on the electrode, as observed for other polyoxometalate catalysts. In these conditions, no heterogeneous catalyst forms on the anode, and it does not show any deposited material or significant catalytic activity after a catalytic cycle. Co(9) is also an extremely robust catalyst for chemical water oxidation. It is able to continuously catalyze oxygen evolution during days from a buffered sodium hypochlorite solution, maintaining constant rates and efficiencies without any significant apparition of fatigue.

SELECTION OF CITATIONS
SEARCH DETAIL
...