Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 10(19): 16367-16375, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29676560

ABSTRACT

The lithium oxygen battery has a theoretical energy density potentially meeting the challenging requirements of electric vehicles. However, safety concerns and short lifespan hinder its application in practical systems. In this work, we show a cell configuration, including a multiwalled carbon nanotube electrode and a low flammability glyme electrolyte, capable of hundreds of cycles without signs of decay. Nuclear magnetic resonance and electrochemical tests confirm the suitability of the electrolyte in a practical battery, whereas morphological and structural aspects revealed by electron microscopy and X-ray diffraction demonstrate the reversible formation and dissolution of lithium peroxide during the electrochemical process. The enhanced cycle life of the cell and the high safety of the electrolyte suggest the lithium oxygen battery herein reported as a viable system for the next generation of high-energy applications.

2.
J Phys Chem Lett ; 9(7): 1739-1745, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29551062

ABSTRACT

Combining theoretical and experimental approaches, we investigate the solvation properties of Li+ ions in a series of ether solvents (dimethoxyethane, diglyme, triglyme, tetraglyme, and 15-crown-5) and their subsequent effects on the solid-state lithium-sulfur reactions in subnano confinement. The ab initio and classical molecular dynamics (MD) simulations predict Li+ ion solvation structures within ether solvents in excellent agreement with experimental evidence from electrospray ionization-mass spectroscopy. An excellent correlation is also established between the Li+-solvation binding energies from the ab initio MD simulations and the lithiation overpotentials obtained from galvanostatic intermittent titration techniques (GITT). These findings convincingly indicate that a stronger solvation binding energy imposes a higher lithiation overpotential of sulfur in subnano confinement. The mechanistic understanding achieved at the electronic and atomistic level of how Li+-solvation dictates its electrochemical reactions with sulfur in subnano confinement provides invaluable guidance in designing future electrolytes and electrodes for Li-sulfur chemistry.

3.
J Phys Chem B ; 122(4): 1537-1544, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29355016

ABSTRACT

Nanostructured block copolymer electrolytes have the potential to enable solid-state batteries with lithium metal anodes. We present complete continuum characterization of ion transport in a lamellar polystyrene-b-poly(ethylene oxide) copolymer/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte as a function of salt concentration. Electrochemical measurements are used to determine the Stefan-Maxwell salt diffusion coefficients [Formula: see text], [Formula: see text], and [Formula: see text]. Individual self-diffusion coefficients of the lithium- and TFSI-containing species were measured by pulsed-field gradient NMR (PFG-NMR). The NMR data indicate that salt diffusion is locally anisotropic, and this enables determination of a diffusion coefficient parallel to the lamellae, D∥, and a diffusion coefficient through defects in the lamellae, D⊥. We quantify anisotropic diffusion by defining an NMR morphology factor and demonstrate that it is correlated to defect density seen by transmission electron microscopy. We find agreement between the electrochemically determined Stefan-Maxwell diffusion coefficients and the diffusion coefficient D⊥ determined by PFG-NMR. Our work indicates that the performance of nanostructured block copolymer electrolytes in batteries is strongly influenced by ion transport through defects.

4.
Proc Natl Acad Sci U S A ; 115(6): 1156-1161, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29351993

ABSTRACT

Lithium metal has gravimetric capacity ∼10× that of graphite which incentivizes rechargeable Li metal batteries (RLMB) development. A key factor that limits practical use of RLMB is morphological instability of Li metal anode upon electrodeposition, reflected by the uncontrolled area growth of solid-electrolyte interphase that traps cyclable Li, quantified by the Coulombic inefficiency (CI). Here we show that CI decreases approximately exponentially with increasing donatable fluorine concentration of the electrolyte. By using up to 7 m of Li bis(fluorosulfonyl)imide in fluoroethylene carbonate, where both the solvent and the salt donate F, we can significantly suppress anode porosity and improve the Coulombic efficiency to 99.64%. The electrolyte demonstrates excellent compatibility with 5-V LiNi0.5Mn1.5O4 cathode and Al current collector beyond 5 V. As a result, an RLMB full cell with only 1.4× excess lithium as the anode was demonstrated to cycle above 130 times, at industrially significant loading of 1.83 mAh/cm2 and 0.36 C. This is attributed to the formation of a protective LiF nanolayer, which has a wide bandgap, high surface energy, and small Burgers vector, making it ductile at room temperature and less likely to rupture in electrodeposition.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Fluorine/chemistry , Lithium , Electrodes , Oxidation-Reduction , Photoelectron Spectroscopy
5.
Phys Chem Chem Phys ; 20(3): 1447-1459, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29255815

ABSTRACT

Garnet-type cubic Li7La3Zr2O12 exhibits one of the highest lithium-ion conductivity values amongst oxides (up to ∼2 mS cm-1 at room temperature). This compound has also emerged as a promising candidate for solid electrolytes in all-solid-state lithium batteries, due to its high ionic conductivity, good chemical stability against lithium metal, and wide electrochemical stability window. Defect chemistry of this class of materials, although less studied, is critical to the understanding of the nature of ionic conductivity and predicting the properties of grain boundaries and heterogeneous solid interfaces. In this study, the electrical properties of nominally undoped cubic Li7La3Zr2O12 are characterized as a function of temperature and pO2 using a suite of AC impedance and DC polarization techniques. The formation of ionic defects and defect pairs as well as their impact on the transport properties are discussed, and a Brouwer-type diagram is constructed.

6.
ACS Nano ; 11(10): 10462-10471, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29016112

ABSTRACT

Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.


Subject(s)
Electrolytes/chemistry , Hydrocarbons, Fluorinated/chemistry , Imides/chemistry , Lithium/chemistry , Molecular Dynamics Simulation , Nanoparticles/chemistry , Cations/chemistry , Ion Transport , Molecular Structure , Neutron Diffraction , Scattering, Small Angle , Spectroscopy, Fourier Transform Infrared
7.
ACS Appl Mater Interfaces ; 9(20): 17085-17095, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28440629

ABSTRACT

Triethylene glycol dimethyl ether (TREGDME) dissolving lithium trifluoromethanesulfonate (LiCF3SO3) is studied as a suitable electrolyte medium for lithium battery. Thermal and rheological characteristics, transport properties of the dissolved species, and the electrochemical behavior in lithium cell represent the most relevant investigated properties of the new electrolyte. The self-diffusion coefficients, the lithium transference numbers, the ionic conductivity, and the ion association degree of the solution are determined by pulse field gradient nuclear magnetic resonance and electrochemical impedance spectroscopy. The study sheds light on the determinant role of the lithium nitrate (LiNO3) addition for allowing cell operation by improving the electrode/electrolyte interfaces and widening the voltage stability window. Accordingly, an electrochemical activation procedure of the Li/LiFePO4 cell using the upgraded electrolyte leads to the formation of stable interfaces at the electrodes surface as clearly evidenced by cyclic voltammetry, impedance spectroscopy, and ex situ scanning electron microscopy. Therefore, the lithium battery employing the TREGDME-LiCF3SO3-LiNO3 solution shows a stable galvanostatic cycling, a high efficiency, and a notable rate capability upon the electrochemical conditions adopted herein.

8.
J Chem Phys ; 146(6): 064902, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28201898

ABSTRACT

We report a theoretical approach for analyzing impedance of ionic liquids (ILs) and charged polymers such as polymerized ionic liquids (PolyILs) within linear response. The approach is based on the Rayleigh dissipation function formalism, which provides a computational framework for a systematic study of various factors, including polymer dynamics, in affecting the impedance. We present an analytical expression for the impedance within linear response by constructing a one-dimensional model for ionic transport in ILs/PolyILs. This expression is used to extract mutual diffusion constants, the length scale of mutual diffusion, and thicknesses of a low-dielectric layer on the electrodes from the broadband dielectric spectroscopy measurements done for an IL and three PolyILs. Also, static dielectric permittivities of the IL and the PolyILs are determined. The extracted mutual diffusion constants are compared with the self-diffusion constants of ions measured using pulse field gradient (PFG) fluorine nuclear magnetic resonance (NMR). For the first time, excellent agreement between the diffusivities extracted from the Electrode Polarization spectra (EPS) of IL/PolyILs and those measured using the PFG-NMR are found, which allows the use of the EPS and the PFG-NMR techniques in a complimentary manner for a general understanding of the ionic transport.

9.
Phys Chem Chem Phys ; 19(1): 574-586, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27918030

ABSTRACT

Sodium ion batteries are on the cusp of being a commercially available technology. Compared to lithium ion batteries, sodium ion batteries can potentially offer an attractive dollar-per-kilowatt-hour value, though at the penalty of reduced energy density. As a materials system, sodium ion batteries present a unique opportunity to apply lessons learned in the study of electrolytes for lithium ion batteries; specifically, the behavior of the sodium ion in an organic carbonate solution and the relationship of ion solvation with electrode surface passivation. In this work the Li+ and Na+-based solvates were characterized using electrospray mass spectrometry, infrared and Raman spectroscopy, 17O, 23Na and pulse field gradient double-stimulated-echo pulse sequence nuclear magnetic resonance (NMR), and conductivity measurements. Spectroscopic evidence demonstrate that the Li+ and Na+ cations share a number of similar ion-solvent interaction trends, such as a preference in the gas and liquid phase for a solvation shell rich in cyclic carbonates over linear carbonates and fluorinated carbonates. However, quite different IR spectra due to the PF6- anion interactions with the Na+ and Li+ cations were observed and were rationalized with the help of density functional theory (DFT) calculations that were also used to examine the relative free energies of solvates using cluster - continuum models. Ion-solvent distances for Na+ were longer than Li+, and Na+ had a greater tendency towards forming contact pairs compared to Li+ in linear carbonate solvents. In tests of hard carbon Na-ion batteries, performance was not well correlated to Na+ solvent preference, leading to the possibility that Na+ solvent preference may play a reduced role in the passivation of anode surfaces and overall Na-ion battery performance.

10.
New J Chem ; 40(3): 2935-2943, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-27182193

ABSTRACT

A novel, low cost and environmentally sustainable lithium sulfide-carbon composite cathode, suitably prepared by combining polyethylene oxide (PEO), LiCF3SO3 and Li2S-C powders is here presented. The cathode is characterized in lithium-metal cell employing a solution of LiCF3SO3 salt in dioxolane-dimethylether (DOL-DME) as the electrolyte. Detailed NMR investigation of the diffusion properties of the electrolyte is reported in order to determine its suitability for the proposed cell. The addition of LiNO3 to the electrolyte solution allows practical application in a lithium sulfur cell using the Li2S-C-based cathode characterized by a specific capacity of about 500 mAh g-1 (as referenced to the Li2S mass). The cell holds its optimal performances for over 70 cycles at C/5 rate, with a steady state efficiency approaching 99%. X-ray diffraction patterns of the cell upon operation suggest the reversibility of the Li2S electrochemical process, while repeated electrochemical impedance spectroscopy (EIS) measurements indicate the suitability of the electrode-electrolyte interface in terms of low and stable cell impedance. Furthermore, the EIS study clarifies the activation process occurring at the Li2S cathode during the first charge process, leading to the decrease of the cell polarization during the following cycles. The data here reported shed light on important aspects to be considered for the efficient application of the Li2S cathode in lithium battery.

11.
ACS Appl Mater Interfaces ; 7(25): 13859-65, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26057152

ABSTRACT

Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Ether/chemistry , Lithium/chemistry , Sulfur/chemistry , Magnetic Resonance Spectroscopy , Temperature
12.
J Am Chem Soc ; 137(4): 1384-7, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25602621

ABSTRACT

In an example of stability from instability, a Li(7)P(2)S(8)I solid-state Li-ion conductor derived from ß-Li(3)PS(4) and LiI demonstrates electrochemical stability up to 10 V vs Li/Li(+). The oxidation instability of I is subverted via its incorporation into the coordinated structure. The inclusion of I also creates stability with the metallic Li anode while simultaneously enhancing the interfacial kinetics and ionic conductivity. Low-temperature membrane processability enables facile fabrication of dense membranes, making this conductor suitable for industrial adoption.

13.
J Phys Chem B ; 117(36): 10581-8, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23941158

ABSTRACT

Molecular dynamics (MD) simulations using a many-body polarizable APPLE&P force field have been performed on mixtures of the N-methyl-N-pentylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PY15TFSI) ionic liquid (IL) with three molecular solvents: propylene carbonate (PC), dimethyl carbonate (DMC), and acetonitrile (AN). The MD simulations predict density, viscosity, and ionic conductivity values that agree well with the experimental results. In the solvent-rich regime, the ionic conductivity of the PY15TFSI-AN mixtures was found to be significantly higher than the conductivity of the corresponding -PC and -DMC mixtures, despite the similar viscosity values obtained from both the MD simulations and experiments for the -DMC and -AN mixtures. The significantly lower conductivity of the PY15TFSI-DMC mixtures, as compared to those for PY15TFSI-AN, in the solvent-rich regime was attributed to the more extensive ion aggregation observed for the -DMC mixtures. The PY15TFSI-DMC mixtures present an interesting case where the addition of the organic solvent to the IL results in an increase in the cation-anion correlations, in contrast to what is found for the mixtures with PC and AN, where ion motion became increasingly uncorrelated with addition of solvent. A combination of pfg-NMR and conductivity measurements confirmed the MD simulation predictions. Further insight into the molecular interactions and properties was also obtained using the MD simulations by examining the solvent distribution in the IL-solvent mixtures and the mixture excess properties.

14.
J Chem Phys ; 138(18): 184503, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23676052

ABSTRACT

The transport properties of molten LiF-YF3 mixtures have been studied by pulsed field gradient nuclear magnetic resonance spectroscopy, potentiometric experiments, and molecular dynamics simulations. The calculated diffusion coefficients and electric conductivities compare very well with the measurements across a wide composition range. We then extract static (radial distribution functions, coordination numbers distributions) and dynamic (cage correlation functions) quantities from the simulations. Then, we discuss the interplay between the microscopic structure of the molten salts and their dynamic properties. It is often considered that variations in the diffusion coefficient of the anions are mainly driven by the evolution of its coordination with the metallic ion (Y(3+) here). We compare this system with fluorozirconate melts and demonstrate that the coordination number is a poor indicator of the evolution of the diffusion coefficient. Instead, we propose to use the ionic bonds lifetime. We show that the weak Y-F ionic bonds in LiF-YF3 do not induce the expected tendency of the fluoride diffusion coefficient to converge toward one of the yttrium cation when the content in YF3 increases. Implications on the validity of the Nernst-Einstein relation for estimating the electrical conductivity are discussed.

15.
J Phys Chem B ; 117(18): 5668-74, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23590459

ABSTRACT

The electronic properties and atomic structure of a molten xLi2O-(1 - x)B2O3 system were investigated by measuring conductivity and using first-principles molecular dynamics (MD) simulations. The conductivities obtained were converted to a Li self-diffusion coefficient Dσ, using the Nernst-Einstein equation to assess charge transfer mechanisms. Dσ was compared with a Li self-diffusion coefficient, DNMR, which we measured in a previous study using high-temperature pulsed field gradient NMR. The DNMR/Dσ of xLi2O-(1 - x)B2O3 (0.2 ≤ x ≤ 0.5) at 1250 K ranged from 2.5 to 3.2, following the same trend as room temperature ionic liquids. First-principles MD simulations were performed using our own finite element density functional theory code, FEMTECK (finite element method-based total energy calculation) for molten xLi2O-(1 - x)B2O3 systems at 1250 K. We found that the O-B-O angle distribution functions were characterized by a peak at approximately 120°. Although the electron number from the electronic radial distribution function was arbitrary with regard to the cutoff distance, the net Li charge calculated from the integrated electron number surrounding Li was approximately 0.9 at 0.085 nm. The mean square displacement (MSD) of Li as a function of time was evaluated from the atomic configuration. Li self-diffusion coefficients calculated from the MSD were in better agreement with experimental results than they were using classical MD.

16.
Phys Chem Chem Phys ; 14(39): 13535-8, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22964968

ABSTRACT

Lithium self-diffusion coefficients are measured for the first time using (7)Li Pulsed-Field Gradient Nuclear Magnetic Resonance (PFG-NMR) in a crystalline inorganic powder of α-Li(3)N between 534 K and 774 K. The diffusion of lithium cations is anisotropic, and the activation energy for the diffusion within the Li(2)N layers was found to be 0.150 ± 0.009 eV.


Subject(s)
Lithium Compounds/chemistry , Diffusion , Magnetic Resonance Spectroscopy
17.
Magn Reson Chem ; 48(4): 297-303, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20198610

ABSTRACT

The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.


Subject(s)
Cheese , Phosphates/chemistry , Phosphorus/chemistry , Quantum Theory , Sodium/chemistry , Ion Exchange , Ions , Magnetic Resonance Spectroscopy
18.
Magn Reson Chem ; 47(4): 307-12, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19152376

ABSTRACT

(23)Na NMR spectroscopy has been used to study the effects of Na(+) ion concentrations on the structure of 1% (w/w) iota-carrageenan systems, a natural gelling polysaccharide used as a thickener in the food industry. Rheological and (23)Na T(1) relaxation time measurements revealed that gel formation correlates with decreases in ion mobility over the range of 0-3% (w/w) sodium content. (23)Na single-quantum (SQ) and double-quantum-filtered (DQF) NMR experiments performed on these systems provided evidence for a 'bound' sodium ion fraction in a specifically ordered environment. These results have allowed us to propose a model for the carrageenan gelation mechanism in the presence of Na(+) ions.


Subject(s)
Carrageenan/chemistry , Quantum Theory , Sodium Chloride/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Rheology , Sodium Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...