Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38847264

ABSTRACT

BACKGROUND: Estrogen alpha has been recognized as a perilous factor in breast cancer cell proliferation and has been proficiently treated in breast cancer chemotherapy with the development of selective estrogen receptor modulators (SERMs). OBJECTIVES: The major aim of this study was to identify the potential inhibitors against the most influential target ERα receptor by in silico studies of 115 phytochemicals from 17 medicinal plants using in silico molecular docking studies. METHODS: The molecular docking investigation was carried out by a genetic algorithm using the Auto Dock Vina program, and the validation of docking was also performed using molecular dynamic (MD) simulation by the Desmond tool of Schrödinger molecular modeling. The ADME( T) studies were performed by SWISS ADME and ProTox-II. RESULTS: The top ten highest binding energy phytochemicals identified were amyrin acetate (- 10.7 kcal/mol), uscharine (-10.5 kcal/mol), voruscharin (-10.0 kcal/mol), cyclitols (-10.0 kcal/mol), taraxeryl acetate (-9.9 kcal/mol), amyrin (-9.9 kcal/mol), barringtogenol C (-9.9 kcal/mol), calactin (-9.9 kcal/mol), 3-beta taraxerol (-9.8 kcal/mol), and calotoxin (-9.8 kcal/mol). A molecular docking study revealed that these phytochemical constituents showed higher binding affinity compared to the reference standard tamoxifen (-6.6 kcal/mol) towards the target protein ERα. The results of MD studies showed that all four tested compounds possess comparatively stable ligand-protein complexes with ERα target as compared to the tamoxifen- ERα complex. CONCLUSION: Among the ten compounds, phytochemical amyrin acetate (triterpenoids) formed a more stable complex as well as exhibited greater binding affinity than standard tamoxifen. ADMET studies for the top ten phytochemicals showed a good safety profile. Additionally, these compounds are being reported for the first time in this study as possible inhibitors of ERα for the treatment of breast cancer by adopting the concept of drug repurposing. Hence, these phytochemicals can be further studied and can be used as a parent core molecule to develop novel lead molecules for breast cancer therapy.

2.
Biosci Biotechnol Biochem ; 71(9): 2177-83, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17827693

ABSTRACT

To evaluate the antitumor and cytotoxic activity of methanol extract of Phyllanthus polyphyllus (MPP) in mice and human cancer cell lines, the antitumor activity of MPP was evaluated against an Ehrlich ascites carcinoma (EAC) tumor model. The activity was assessed using survival time, hematological studies, lipid peroxidation (LPO), antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione S-transferase (GST), solid tumor mass, and short-term in vitro cytotoxicity. The cytotoxic activity of MPP was evaluated using human breast cancer (MCF7), colon cancer (HT29), and liver cancer (HepG2) cell lines Oral administration of MPP (200 and 300 mg/kg) increased the survival time and significantly reduced the solid tumor volume in a dose-dependent manner. Hematological parameters, protein, and packed cellular volume (PCV), which were altered by tumor inoculation, were restored. MPP significantly decreased the levels of LPO, GPx, GST, and significantly increased the levels of SOD and CAT. In a cytotoxicity study against human cancer cell lines, MPP was found to have IC50 values of 27, 42 and 38 microg/ml on MCF-7, HT-29, and HepG2 cells respectively. MPP possessed significant antitumor and cytotoxic activity on EAC and human cancer cell lines.


Subject(s)
Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Phyllanthus/chemistry , Phytotherapy , Plant Extracts/pharmacology , Animals , Antioxidants/metabolism , Carcinoma, Ehrlich Tumor/metabolism , Cell Line, Tumor , Humans , Lipid Peroxidation/drug effects , Male , Mice , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Survival Rate , Time Factors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...