Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oper Neurosurg (Hagerstown) ; 19(5): 599-607, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32521010

ABSTRACT

BACKGROUND: Fusion of preoperative and intraoperative magnetic resonance imaging (iMRI) studies during stereotactic navigation may be very useful for procedures such as tumor resections but can be subject to error because of image distortion. OBJECTIVE: To assess the impact of 3-dimensional (3D) vs 2-dimensional (2D) image distortion correction on the accuracy of auto-merge image fusion for stereotactic neurosurgical images acquired with iMRI using a head phantom in different surgical positions. METHODS: T1-weighted intraoperative images of the head phantom were obtained using 1.5T iMRI. Images were postprocessed with 2D and 3D image distortion correction. These studies were fused to T1-weighted preoperative MRI studies performed on a 1.5T diagnostic MRI. The reliability of the auto-merge fusion of these images for 2D and 3D correction techniques was assessed both manually using the stereotactic navigation system and via image analysis software. RESULTS: Eight surgical positions of the head phantom were imaged with iMRI. Greater image distortion occurred with increased distance from isocenter in all 3 axes, reducing accuracy of image fusion to preoperative images. Visually reliable image fusions were accomplished in 2/8 surgical positions using 2D distortion correction and 5/8 using 3D correction. Three-dimensional correction yielded superior image registration quality as defined by higher maximum mutual information values, with improvements ranging between 2.3% and 14.3% over 2D correction. CONCLUSION: Using 3D distortion correction enhanced the reliability of surgical navigation auto-merge fusion of phantom images acquired with iMRI across a wider range of head positions and may improve the accuracy of stereotactic navigation using iMRI images.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Reproducibility of Results
2.
Paediatr Anaesth ; 18(11): 1082-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18717802

ABSTRACT

BACKGROUND: Dexmedetomidine may be a useful agent as an adjunct to an opioid-propofol total intravenous anesthesia (TIVA) technique during posterior spinal fusion (PSF) surgery. There are limited data regarding its effects on somatosensory (SSEPs) and motor evoked potentials (MEPs). METHODS: The data presented represent a retrospective review of prospectively collected quality assurance data. When the decision was made to incorporate dexmedetomidine into the anesthetic regimen for intraoperative care of patients undergoing PSF, a prospective evaluation of its effects on SSEPs and MEPs was undertaken. SSEPs and MEPs were measured before and after the administration of dexmedetomidine in a cohort of pediatric patients undergoing PSF. Dexmedetomidine (1 microg x kg(-1) over 20 min followed by an infusion of 0.5 microg x kg(-1) x h(-1)) was administered at the completion of the surgical procedure, but prior to wound closure as an adjunct to TIVA which included propofol and remifentanil, adjusted to maintain a constant depth of anesthesia as measured by a BIS of 45-60. RESULTS: The cohort for the study included nine patients, ranging in age from 12 to 17 years, anesthetized with remifentanil and propofol. In the first patient, dexmedetomidine was administered in conjunction with propofol at 110 microg x kg(-1) x min(-1) which resulted in a decrease in the bispectral index from 58 to 31. Although no significant effect was noted on the SSEPs (amplitude or latency) or the MEP duration, there was a decrease in the MEP amplitude. The protocol was modified so that the propofol infusion was incrementally decreased during the dexmedetomidine infusion to achieve the same depth of anesthesia. In the remaining eight patients, the bispectral index was 52 +/- 6 at the start of the dexmedetomidine loading dose and 49 +/- 4 at its completion (P = NS). There was no statistically significant difference in the MEPs and SSEPs obtained before and at completion of the dexmedetomidine loading dose. CONCLUSION: Using the above-mentioned protocol, dexmedetomidine can be used as a component of TIVA during PSF without affecting neurophysiological monitoring.


Subject(s)
Adrenergic alpha-Agonists/pharmacology , Anesthesia, Intravenous/methods , Dexmedetomidine/pharmacology , Evoked Potentials, Motor/drug effects , Evoked Potentials, Somatosensory/drug effects , Spinal Fusion/methods , Adolescent , Child , Cohort Studies , Electroencephalography/methods , Female , Humans , Male , Monitoring, Intraoperative/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...