Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Colloid Interface Sci ; 329: 103187, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788307

ABSTRACT

The history of the topic of proteins at soft interfaces dates back to the 19th century, and until the present day, it has continuously attracted great scientific interest. A multitude of experimental methods and theoretical approaches have been developed to serve the research progress in this large domain of colloid and interface science, including the area of soft colloids such as foams and emulsions. From classical methods like surface tension adsorption isotherms, surface pressure-area measurements for spread layers, and surface rheology probing the dynamics of adsorption, nowadays, advanced surface-sensitive techniques based on spectroscopy, microscopy, and the reflection of light, X-rays and neutrons at liquid/fluid interfaces offers important complementary sources of information. Apart from the fundamental characteristics of protein adsorption layers, i.e., surface tension and surface excess, the nanoscale structure of such layers and the interfacial protein conformations and morphologies are of pivotal importance for extending the depth of understanding on the topic. In this review article, we provide an extensive overview of the application of three methods, namely, ellipsometry, X-ray reflectometry and neutron reflectometry, for adsorption and structural studies on proteins at water/air and water/oil interfaces. The main attention is placed on the development of experimental approaches and on a discussion of the relevant achievements in terms of notable experimental results. We have attempted to cover the whole history of protein studies with these techniques, and thus, we believe the review should serve as a valuable reference to fuel ideas for a wide spectrum of researchers in different scientific fields where proteins at soft interface may be of relevance.


Subject(s)
Proteins , Proteins/chemistry , Adsorption , Surface Properties , Water/chemistry , Colloids/chemistry
2.
J Phys Chem B ; 128(11): 2821-2830, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38471121

ABSTRACT

The effect of the degree of isotopic substitution of the aqueous medium on the adsorption kinetics and the surface dilational rheological behavior at the water/air interface of the globular protein ß-lactoglobulin was investigated. Aqueous solutions with fixed concentrations of 1 µM protein and 10 mM hydrogenous buffer with controlled pH 7 were prepared in H2O, D2O, and an isotopic mixture of 8.1% v/v D2O in H2O (called air contrast matched water, ACMW). Using a bubble shape analysis tensiometer, we obtained various experimental dependencies of the dilational viscoelasticity modulus E as a function of the dynamic surface pressure and of the frequency and amplitude of bubble surface area oscillations, either in the course of adsorption or after having reached a steady state. In general, the results revealed virtually no effect from substituting H2O by ACMW but distinct albeit relatively weak effects for intermediate adsorption times for D2O as the aqueous phase. In the final stage of adsorption, established after around 10 h, the equilibrium adsorption and the dilational rheological behavior of all protein layers under investigation are only very weakly affected by the presence of D2O. The obtained results help to design experimental protocols for protein adsorption studies, for example, by neutron reflectivity.

3.
Biomacromolecules ; 22(12): 5195-5203, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34813296

ABSTRACT

Protein adsorption to surfaces is at the heart of numerous technological and bioanalytical applications, but sometimes, it is also associated with medical risks. To deepen our insights into processes involving layers of surface-adsorbed proteins, high-resolution structural information is essential. Here, we use standing-wave X-ray fluorescence (SWXF) in combination with an optimized liquid-cell setup to investigate the underwater conformation of the random-coiled phosphoprotein ß-casein adsorbed to hydrophilic and hydrophobized solid surfaces. The orientation of the protein, as determined through the distributions of sulfur and phosphorus, is found to be sensitive to the chemical nature of the substrate. While no preferred orientations are observed on hydrophobized surfaces, on hydrophilic Al oxide, ß-casein is adsorbed as a diblock copolymer with the phosphorylated domain I attached to the surface. Our results demonstrate that targeting biologically relevant chemical elements with SWXF enables a detailed investigation of biomolecular layers under near-physiological conditions.


Subject(s)
Membrane Proteins , Adsorption , Fluorescence , Protein Conformation , Surface Properties , X-Rays
4.
J Phys Chem B ; 123(50): 10877-10889, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31725291

ABSTRACT

Several characteristics of ß-lactoglobulin (BLG) layers adsorbed at the air/water interface exhibit a strong pH dependence, but our knowledge on the underlying structure-property relations is still fragmental. Here, we therefore extend our recent studies by neutron reflectometry (NR) and provide a comprehensive overview through direct measurements of the surface excess Γ and the layers' molecular structure. This enables comparison with available literature data to draw general conclusions. The NR experiments were performed at various pH values and within a wide range of protein concentrations, CBLG. Adsorption kinetics measurements in air-contrast-matched-water and over a narrow Qz range enabled direct quantification of the dynamic surface excess Γ(t) and are found to be consistent with ellipsometry data. Near the isoelectric point, pI, the rates of adsorption and Γ are maximal but only at sufficiently high CBLG. NR data collected over a wider Qz range and in two aqueous isotopic contrasts revealed the structure of adsorbed BLG layers at a steady state close to equilibrium. Independent of the pH, BLG was found to form dense monolayers with average thicknesses of 1.1 nm, suggesting flattening of the BLG globules upon adsorption as compared with their bulk dimensions (≈3.5 nm). Near pI and at sufficiently high CBLG, a thick (≈5.5 nm) but looser secondary sublayer is additionally formed adjacent to the dense primary monolayer. The thickness of this sublayer can be interpreted in terms of disordered BLG dimers. The results obtained and notably the specific interfacial structuring of BLG near pI complement previous observations relating the impact of solution pH and CBLG on other interfacial characteristics such as surface pressure and surface dilational viscoelasticity modulus.


Subject(s)
Air , Lactoglobulins/chemistry , Water/chemistry , Adsorption , Hydrogen-Ion Concentration , Neutron Diffraction , Surface Properties
5.
Langmuir ; 35(35): 11299-11307, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31398284

ABSTRACT

The properties of proteins at interfaces are important to many processes as well as in soft matter materials such as aqueous foam. Particularly, the protein interfacial behavior is strongly linked to different factors like the solution pH or the presence of electrolytes. Here, the nature of the electrolyte ions can significantly modify the interfacial properties of proteins. Therefore, molecular level studies on interfacial structures and charging states are needed. In this work, we addressed the effects of Y3+ and Nd3+ cations on the adsorption of the whey protein ß-lactoglobulin (BLG) at air-water interfaces as the function of electrolyte concentration. Both cations caused very similar but dramatic changes at the interface and in the bulk solution. Here, measurements of the electrophoretic mobility and with vibrational sum-frequency generation (SFG) spectroscopy were applied and consistently showed a reversal of the BLG net charge at remarkably low ion concentrations of 30 (bulk) and 40 (interface) µM of Y3+ or Nd3+ for a BLG concentration of 15 µM. SFG spectra of carboxylate stretching vibrations from Asp or Glu residues of interfacial BLG showed significant changes in the resonance frequency, which we associate to specific and efficient binding of Y3+ or Nd3+ ions to the proteins carboxylate groups. Characteristic reentrant condensation for BLG moieties with bound trivalent ions was found in a broad concentration range around the point of zero net charge. The highest colloidal stability of BLG was found for ion concentrations <20 µM and >50 µM. Investigations on macroscopic foams from BLG solutions revealed the existence of structure-property relations between the interfacial charging state and the foam stability. In fact, a minimum in foam stability at 20 µM ion concentration was found when the interfacial net charge was negligible. At this concentration, we propose that the persistent BLG molecules and weakly charged BLG aggregates drive foam stability, while outside the bulk reentrant zone the electrostatic disjoining pressure inside foam lamellae dominates foam stability. Our results provide new information on the charge reversal at the liquid-gas interface of protein/ion dispersions. Therefore, we see our findings as an important step in the clarification of reentrant condensation effects at interfaces and their relevance to foam stability.


Subject(s)
Lactoglobulins/chemistry , Neodymium/chemistry , Yttrium/chemistry , Adsorption , Cations/chemistry , Models, Molecular , Molecular Structure , Particle Size , Surface Properties
6.
J Phys Chem B ; 123(22): 4803-4812, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31082226

ABSTRACT

The surface properties of mixed aqueous dispersions of lysozyme and silica nanoparticles were studied using surface-sensitive techniques in order to gain insight into the mechanism of the simultaneous adsorption of protein/nanoparticle complexes and free protein as well as the resulting layer morphologies. The properties were first monitored in situ during adsorption at the air/water interface using dilatational surface rheology, ellipsometry, and Brewster angle microscopy. Two main steps in the evolution of the surface properties were identified. First, the adsorption of complexes did not lead to significant deviations in the dynamic surface elasticity and dynamic surface pressure from those for a layer of adsorbed lysozyme globules. Second, through the gradual displacement of protein globules from the interfacial layer as a result of further complex adsorption, the layer became more dense with much higher dynamic surface elasticity (∼280 mN/m compared to ∼80 mN/m for a pure protein layer). These layers were shown to be fragile and could be easily broken into separate islands of irregular shape by a weak mechanical disturbance. The layer properties were then monitored following their transfer to solid substrates using atomic force microscopy and scanning electron microscopy. These layers were shown to consist of nanoparticles surrounded by a rough shell of protein globules, whereas some particles tended to form filamentous aggregates. This comprehensive study provides new mechanistic and morphological insight into the surface properties of a model protein/nanoparticle system, which is of fundamental interest in colloidal science and can be extended to systems of physiological relevance.


Subject(s)
Muramidase/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Kinetics , Surface Properties
7.
J Phys Chem C Nanomater Interfaces ; 123(2): 1279-1286, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30713590

ABSTRACT

Vibrational sum-frequency generation (SFG) spectroscopy is demonstrated as a fast method to quantify variations of the electric double-layer potential ϕ0 at liquid-gas interfaces. For this, mixed solutions of nonionic tetraethyleneglycol-monodecylether (C10E4) and cationic hexadecyltrimethylammonium bromide (C16TAB) surfactants were investigated using SFG spectroscopy and a thin-film pressure balance (TFPB). Derjaguin-Landau-Verwey-Overbeek analysis of disjoining pressure isotherms obtained with the TFPB technique provides complementary information on ϕ0, which we apply to validate the results from SFG spectroscopy. By using a single ϕ0 value, we can disentangle χ(2) and χ(3) contributions to the O-H stretching modes of interfacial water molecules in the SFG spectra. Having established the latter, we show that unknown double-layer potentials at the liquid-gas interface from solutions with different C16TAB/C10E4 mixing ratios can be obtained from an analysis of SFG spectra and are in excellent agreement with the complementary results from the TFPB technique.

8.
Soft Matter ; 12(27): 5995-6004, 2016 Jul 06.
Article in English | MEDLINE | ID: mdl-27337699

ABSTRACT

ß-Lactoglobulin (BLG) adsorption layers at air-water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca(2+) concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy - from the ubiquitous air-water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O-H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca(2+) concentrations above 1 mM causes an apparent change in the polarity of aromatic C-H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca(2+) concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca(2+), micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca(2+) concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes.

9.
J Colloid Interface Sci ; 449: 383-91, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25666640

ABSTRACT

Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of ß-lactoglobulin (BLG, 1 µM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface.


Subject(s)
Lactoglobulins/chemistry , Surface-Active Agents/chemistry , Adsorption , Elasticity , Hexanes/chemistry , Rheology , Sodium Dodecyl Sulfate/chemistry , Surface Properties , Viscosity , Water/chemistry
10.
Langmuir ; 29(37): 11646-55, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23961700

ABSTRACT

Macroscopic properties of aqueous ß-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interactions at the air-water interface can be changed substantially with the solution pH and result in major changes in interfacial dilational and foam rheology. At a pH near the interfacial isoelectric point BLG molecules carry zero net charge and disordered multilayers with the highest interfacial dilatational elasticity are formed at the air-water interface. Increasing or decreasing the pH with respect to the isoelectric point leads to the formation of a BLG monolayer with repulsive electrostatic interactions among the adsorbed molecules which decrease the interfacial dilational elasticity. The latter molecular information does explain the behavior of BLG foams in our rheological studies, where in fact the highest apparent yield stresses and storage moduli are established with foams from electrolyte solutions with a pH close to the isoelectric point of BLG. At this pH the gas bubbles of the foam are stabilized by BLG multilayers with attractive intermolecular interactions at the ubiquitous air-water interfaces, while BLG layers with repulsive interactions decrease the apparent yield stress and storage moduli as stabilization of gas bubbles with a monolayer of BLG is less effective.


Subject(s)
Lactoglobulins/chemistry , Air , Hydrogen-Ion Concentration , Molecular Structure , Rheology , Surface Properties , Water/chemistry
11.
J Inorg Biochem ; 124: 54-62, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23603012

ABSTRACT

Two coordination compounds of Pd(III) with hematoporphyrin IX ((7,12-bis(1-hydroxyethyl)-3,8,13,17-tetramethyl-21H-23H-porphyn-2,18-dipropionic acid), Hp), dinuclear [Pd(III)2(Hp-3H)Cl3(H2O)5]·2PdCl2, 1 and mononuclear [Pd(III)(Hp-2H)Cl(H2O)]·H2O, 2 were obtained and structurally characterized in solid state and solution using spectroscopic, thermal and magnetic methods. In the dinuclear complex, 1 one of the Pd(III) ions is coordinated to the deprotanated COO(-) groups from the side chains of the porphyrin ligand and the second Pd(III) ion - to two adjacent pyrrole N-atoms on the top of the porphyrin ring and a Pd(III)-Hp-Pd(III) system was formed. The Pd(III) ion in the mononuclear complex, 2 is incorporated in the porphyrin core. The Pd(III) centers in both complexes have a distorted octahedral coordination filled with additional donor species such as Cl(-) and H2O. The studied compounds showed in vitro cell growth inhibitory effects at micromolar concentration against a panel of human tumor cell lines. A DNA fragmentation assay indicated that the growth inhibitory effects are at least partly mediated by induction of apoptosis.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , DNA Fragmentation/drug effects , Hematoporphyrins , Palladium , Photosensitizing Agents , Hematoporphyrins/chemistry , Hematoporphyrins/pharmacology , Humans , K562 Cells , Palladium/chemistry , Palladium/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
12.
Arzneimittelforschung ; 54(6): 323-9, 2004.
Article in English | MEDLINE | ID: mdl-15281618

ABSTRACT

Four new complexes of Ru(III) with a general formula [Ru(L)2Cl2]Cl, where L = 2-amino-4-phenylthiazole (CAS 2010-06-2), 2-amino-4-methylthiazole (CAS 1603-91-4), ethyl 2-amino-4-methyl-5-thiazolecarboxylate (CAS 7210-76-6) and ethyl 2-amino-4-phenyl-5-thiazolecarboxylate (CAS 64399-23-1), were prepared. The syntheses were carried out in polar medium and inert atmosphere at a molar ratio Ru:L = 1:2 or 1:3. The compounds obtained were characterised by IR-, 1H-NMR- 13C-NMR-, UV-VIS-, EPR spectroscopy, magnetochemical and conductivity measurements. The ligands behaved as bidental, bounding Ru(III) through the nitrogen atoms from the amino group and the heterocycle. The complex of ethyl 2-amino-4-phenyl-5-thiazolecarboxylate showed significant antileukaemic activity on various human cells (IC50 values ranging from 20 to 92 micromol/l). Toxicological studies on mice indicated that such concentrations could be reached without mortality. This compound exhibited a promising antineoplastic potential and needs further pharmacological and toxicological evaluation.


Subject(s)
Antineoplastic Agents/chemical synthesis , Ruthenium/chemistry , Thiazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chemical Phenomena , Chemistry, Physical , Electron Spin Resonance Spectroscopy , Humans , Indicators and Reagents , Lethal Dose 50 , Ligands , Magnetic Resonance Spectroscopy , Spectrophotometry, Infrared , Temperature , Tetrazolium Salts , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...