Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067051

ABSTRACT

Heart rate variability, which is the fluctuation of the R-R interval (RRI) in electrocardiograms (ECG), has been widely adopted for autonomous evaluation. Since the HRV features that are extracted from RRI data easily fluctuate when arrhythmia occurs, RRI data with arrhythmia need to be modified appropriately before HRV analysis. In this study, we consider two types of extrasystoles-premature ventricular contraction (PVC) and premature atrial contraction (PAC)-which are types of extrasystoles that occur every day, even in healthy persons who have no cardiovascular diseases. A unified framework for ectopic RRI detection and a modification algorithm that utilizes an autoencoder (AE) type of neural network is proposed. The proposed framework consists of extrasystole occurrence detection from the RRI data and modification, whose targets are PVC and PAC. The RRI data are monitored by means of the AE in real time in the detection phase, and a denoising autoencoder (DAE) modifies the ectopic RRI caused by the detected extrasystole. These are referred to as AE-based extrasystole detection (AED) and DAE-based extrasystole modification (DAEM), respectively. The proposed framework was applied to real RRI data with PVC and PAC. The result showed that AED achieved a sensitivity of 93% and a false positive rate of 0.08 times per hour. The root mean squared error of the modified RRI decreased to 31% in PVC and 73% in PAC from the original RRI data by DAEM. In addition, the proposed framework was validated through application to a clinical epileptic seizure problem, which showed that it correctly suppressed the false positives caused by PVC. Thus, the proposed framework can contribute to realizing accurate HRV-based health monitoring and medical sensing systems.


Subject(s)
Cardiac Complexes, Premature , Electrocardiography , Algorithms , Cardiac Complexes, Premature/diagnosis , Heart Rate , Humans , Neural Networks, Computer
2.
PLoS One ; 15(6): e0235442, 2020.
Article in English | MEDLINE | ID: mdl-32598404

ABSTRACT

In this study, we were challenging to identify characteristic compounds in breast cancer cell lines. GC analysis of extracts from the culture media of breast cancer cell lines (MCF-7, SK-BR-3, and YMB-1) using a solid-phase Porapak Q extraction revealed that two compounds of moderate volatility, 1-hexadecanol and 5-(Z)-dodecenoic acid, were detected with markedly higher amount than those in the medium of fibroblast cell line (KMST-6). Furthermore, LC-TOF/MS analysis of the extracts clarified that in addition to the above two fatty acids, the amounts of five unsaturated fatty acids [decenoic acid (C10:1), decadienoic acid (C10:2), 5-(Z)-dodecenoic acid (C12:1), 5-(Z)-tetradecenoic acid (C14:1), and tetradecadienoic acid (C14:2)] in MCF-7 medium were higher than those in medium of KMST-6. Interestingly, H2O2-oxidation of 5-(Z)-dodecenoic acid and 5-(Z)-tetradecenoic acid produced volatile aldehydes that were reported as specific volatiles in breath from various cancer patients, such as heptanal, octanal, nonanal, decanal, 2-(E)-nonenal, and 2-(E)-octenal. Thus, we concluded that these identified compounds over-produced in breast cancer cells in this study could serve as potential precursors producing reported cancer-specific volatiles.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Fatty Acids/metabolism , Volatile Organic Compounds/metabolism , Fatty Acids/analysis , Female , Gas Chromatography-Mass Spectrometry , Humans , Oxidation-Reduction , Solid Phase Microextraction , Tumor Cells, Cultured , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...