Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Meas ; 45(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38478997

ABSTRACT

Objective.Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and being increasingly used for a variety of research and clinical applications to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and limited open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers.Approach.This work describes the creation of a standard Python toolbox, denotedpyPPG, for long-term continuous PPG time-series analysis and demonstrates the detection and computation of a high number of fiducial points and digital biomarkers using a standard fingerbased transmission pulse oximeter.Main results.The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2054 adult polysomnography recordings totaling over 91 million reference beats. The algorithm outperformed the open-source original Matlab implementation by ∼5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points.Significance.Based on these fiducial points,pyPPGengineered a set of 74 PPG biomarkers. Studying PPG time-series variability usingpyPPGcan enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models.pyPPGis available onhttps://physiozoo.com/.


Subject(s)
Photoplethysmography , Signal Processing, Computer-Assisted , Heart Rate/physiology , Photoplethysmography/methods , Polysomnography , Algorithms , Biomarkers
2.
ArXiv ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37502630

ABSTRACT

Efficient and accurate evaluation of long-term photoplethysmography (PPG) recordings is essential for both clinical assessments and consumer products. In 2021, the top opensource peak detectors were benchmarked on the Multi-Ethnic Study of Atherosclerosis (MESA) database consisting of polysomnography (PSG) recordings and continuous sleep PPG data, where the Automatic Beat Detector (Aboy) had the best accuracy. This work presents Aboy++, an improved version of the original Aboy beat detector. The algorithm was evaluated on 100 adult PPG recordings from the MESA database, which contains more than 4.25 million reference beats. Aboy++ achieved an F1-score of 85.5%, compared to 80.99% for the original Aboy peak detector. On average, Aboy++ processed a 1 hour-long recording in less than 2 seconds. This is compared to 115 seconds (i.e., over 57-times longer) for the open-source implementation of the original Aboy peak detector. This study demonstrated the importance of developing robust algorithms like Aboy++ to improve PPG data analysis and clinical outcomes. Overall, Aboy++ is a reliable tool for evaluating long-term wearable PPG measurements in clinical and consumer contexts. The open-source algorithm is available on the physiozoo.com website (on publication of this proceeding).

SELECTION OF CITATIONS
SEARCH DETAIL
...