Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 297(3): 101054, 2021 09.
Article in English | MEDLINE | ID: mdl-34364873

ABSTRACT

Liver intestine (LI)-cadherin is a member of the cadherin superfamily, which encompasses a group of Ca2+-dependent cell-adhesion proteins. The expression of LI-cadherin is observed on various types of cells in the human body, such as normal small intestine and colon cells, and gastric cancer cells. Because its expression is not observed on normal gastric cells, LI-cadherin is a promising target for gastric cancer imaging. However, because the cell adhesion mechanism of LI-cadherin has remained unknown, rational design of therapeutic molecules targeting this cadherin has been hampered. Here, we have studied the homodimerization mechanism of LI-cadherin. We report the crystal structure of the LI-cadherin homodimer containing its first four extracellular cadherin repeats (EC1-4). The EC1-4 homodimer exhibited a unique architecture different from that of other cadherins reported so far, driven by the interactions between EC2 of one protein chain and EC4 of the second protein chain. The crystal structure also revealed that LI-cadherin possesses a noncanonical calcium ion-free linker between the EC2 and EC3 domains. Various biochemical techniques and molecular dynamics simulations were employed to elucidate the mechanism of homodimerization. We also showed that the formation of the homodimer observed in the crystal structure is necessary for LI-cadherin-dependent cell adhesion by performing cell aggregation assays. Taken together, our data provide structural insights necessary to advance the use of LI-cadherin as a target for imaging gastric cancer.


Subject(s)
Cadherins/chemistry , Cadherins/metabolism , Cadherins/genetics , Cell Adhesion , Cell Aggregation , Crystallography, X-Ray , Dimerization , Humans , Protein Domains , Protein Structure, Tertiary
2.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 6): 271-277, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32510468

ABSTRACT

The C-type lectins SPL-1 and SPL-2 from the bivalve Saxidomus purpuratus are composed of A and B chains and of two B chains, respectively. They bind specific carbohydrates containing acetamido groups, such as N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc), in a Ca2+-independent manner. Unlike ordinary C-type lectins, which require Ca2+ ions for carbohydrate recognition, these lectins recognize specific carbohydrates mainly through interactions with the acetamido group without Ca2+ ions, even though Ca2+ enhances the binding affinity of these lectins, especially SPL-1. In the present study, the crystal structure of the SPL-1-GlcNAc complex in the presence of Ca2+ revealed that the binding of SPL-1 to GlcNAc is stabilized by hydrogen bonds to the water molecule(s) coordinating Ca2+, whereas in ordinary C-type lectins Ca2+ directly forms coordinate bonds to the hydroxy groups of carbohydrates. These differences may also allow SPL-1 and SPL-2 to recognize both GlcNAc and GalNAc, which have different orientations of the 4-hydroxy group.


Subject(s)
Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Bivalvia/metabolism , Calcium/metabolism , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Amino Acid Sequence , Animals , Binding Sites , Calcium/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Binding , Protein Conformation , Sequence Homology
3.
Microb Cell Fact ; 19(1): 126, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32513169

ABSTRACT

BACKGROUND: Thermostable enzymes are commonly produced in mesophilic hosts for research and bioengineering purposes. However, these hosts do not overexpress the active forms of some biologically functional thermoenzymes. Therefore, an efficient thermophilic expression system is needed. Thermus thermophilus contains an easily manipulable genome and is therefore among the best candidate microbes for a "hot" expression system. We previously identified a strong and inducible promoter that was active in T. thermophilus under supersaturated silica conditions. Here, we report a new heterologous gene expression system based on a silica-inducible promoter in T. thermophilus. RESULTS: A Thermus sp. A4 gene encoding thermostable ß-galactosidase was cloned as a reporter gene into the expression vector pSix1, which contains a selection marker that confers thermostable resistance to hygromycin and a 600 bp DNA region containing a putative silica-inducible promoter. ß-galactosidase activity was 11-fold higher in the presence than in the absence of 10 mM silicic acid. SDS-PAGE revealed a prominent band corresponding to 73 kDa of ß-galactosidase, and this enzyme was expressed as an active and soluble protein (yield: 27 mg/L) in Thermus but as an inclusion body in Escherichia coli. Truncation of the putative silica-inducible promoter region in Thermus expression vector improved the yield of the target protein, possibly by avoiding plasmid instability due to homologous recombination. Finally, we developed an expression vector containing the pSix1 backbone and a 100 bp DNA region corresponding to the silica-inducible promoter. We used this vector to successfully express the active form of glutamate dehydrogenase from Pyrobaculum islandicum (PisGDH) without additional treatment (yield: 9.5 mg/L), whereas the expression of active PisGDH in E. coli required heat treatment. CONCLUSION: We successfully expressed the thermostable ß-galactosidase and PisGDH in T. thermophilus as active and soluble forms and achieved with our system the highest known protein expression levels in this species. These thermoenzymes were expressed in active and soluble forms. Our results validate the use of our silica-inducible expression system as a novel strategy for the intracellular overexpression of thermostable proteins.


Subject(s)
Bacterial Proteins/biosynthesis , Genetic Vectors , Promoter Regions, Genetic , Thermus thermophilus/genetics , Cloning, Molecular , Gene Expression , Gene Expression Regulation, Bacterial , Glutamate Dehydrogenase/biosynthesis , beta-Galactosidase/biosynthesis
4.
Chembiochem ; 20(19): 2454-2457, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31094059

ABSTRACT

During domain swapping, proteins mutually interconvert structural elements to form a di-/oligomer. Engineering this process by design is important for creating a higher order protein assembly with minimal modification. Herein, a simple design strategy is shown for domain-swapping formation by loop deletion and insertion of a polyproline rod. Crystal structures revealed the formation of the domain-swapped dimers and polyproline portion formed a polyproline II (PPII) structure. Small-angle X-ray scattering demonstrated that an extended orientation of domain-swapped dimer was retained in solution. It is found that a multiple of three of inserting proline residue is favored for domain swapping because of the helical nature of PPII. The rigid nature of the polyproline rod enables precise control of the interdomain distance and orientation.


Subject(s)
Peptides/chemistry , Protein Folding , Proteins/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Humans , Models, Molecular , Protein Engineering , Protein Structure, Tertiary
5.
Protein Sci ; 28(4): 766-778, 2019 04.
Article in English | MEDLINE | ID: mdl-30793424

ABSTRACT

Novel Ca2+ -independent C-type lectins, SPL-1 and SPL-2, were purified from the bivalve Saxidomus purpuratus. They are composed of dimers with either identical (SPL-2 composed of two B-chains) or distinct (SPL-1 composed of A- and B-chains) polypeptide chains, and show affinity for N-acetylglucosamine (GlcNAc)- and N-acetylgalactosamine (GalNAc)-containing carbohydrates, but not for glucose or galactose. A database search for sequence similarity suggested that they belong to the C-type lectin family. X-ray crystallographic analysis revealed definite structural similarities between their subunits and the carbohydrate-recognition domain (CRD) of the C-type lectin family. Nevertheless, these lectins (especially SPL-2) showed Ca2+ -independent binding affinity for GlcNAc and GalNAc. The crystal structure of SPL-2/GalNAc complex revealed that bound GalNAc was mainly recognized via its acetamido group through stacking interactions with Tyr and His residues and hydrogen bonds with Asp and Asn residues, while widely known carbohydrate-recognition motifs among the C-type CRD (the QPD [Gln-Pro-Asp] and EPN [Glu-Pro-Asn] sequences) are not involved in the binding of the carbohydrate. Carbohydrate-binding specificities of individual A- and B-chains were examined by glycan array analysis using recombinant lectins produced from Escherichia coli cells, where both subunits preferably bound oligosaccharides having terminal GlcNAc or GalNAc with α-glycosidic linkages with slightly different specificities.


Subject(s)
Bivalvia/metabolism , Calcium/metabolism , Lectins, C-Type/metabolism , Amino Acid Sequence , Animals , Binding Sites , Bivalvia/chemistry , Cations, Divalent/metabolism , Crystallography, X-Ray , Lectins, C-Type/chemistry , Models, Molecular , Protein Binding , Protein Conformation
6.
Sci Rep ; 8(1): 11516, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30068923

ABSTRACT

A novel galactose-specific lectin, AJLec (18.5 kDa), was isolated from the sea anemone, Anthopleura japonica. AJLec was characterized using the hemagglutination assay, isothermal titration calorimetry (ITC), and glycoconjugate microarray analysis and we found that AJLec has a specificity for galactose monomers and ß-linked terminal galactose residues in complex carbohydrates, but not for N-acetylgalactosamine (GalNAc), which is commonly recognized by galactose-binding lectins. The primary structure of AJLec did not show homology with known lectins, and a crystal structural analysis also revealed a unique homodimeric structure. The crystal structure of AJLec complexed with lactose was solved by measuring the sulfur single-wavelength anomalous diffraction (S-SAD) phasing with an in-house Cu Kα source method. This analysis revealed that the galactose residue in lactose was recognized via its O2, O3, and O4 hydroxyl groups and ring oxygen by calcium coordination and two hydrogen bonds with residues in the carbohydrate-binding site, which demonstrated strict specificity for the ß-linked terminal galactose in this lectin.


Subject(s)
Biological Factors/chemistry , Biological Factors/metabolism , Lectins/chemistry , Lectins/metabolism , Sea Anemones/chemistry , Animals , Biological Factors/isolation & purification , Calorimetry , Crystallography, X-Ray , Hemagglutination , Lectins/isolation & purification , Models, Molecular , Molecular Weight , Polysaccharides/metabolism , Protein Binding , Protein Conformation , Substrate Specificity
7.
Biosci Biotechnol Biochem ; 82(8): 1327-1334, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29629656

ABSTRACT

In Archaea and Bacteria, surface layer (S-layer) proteins form the cell envelope and are involved in cell protection. In the present study, a putative S-layer protein was purified from the crude extract of Pyrococcus horikoshii using affinity chromatography. The S-layer gene was cloned and expressed in Escherichia coli. Isothermal titration calorimetry analyses showed that the S-layer protein bound N-acetylglucosamine and induced agglutination of the gram-positive bacterium Micrococcus lysodeikticus. The protein comprised a 21-mer structure, with a molecular mass of 1,340 kDa, as determined using small-angle X-ray scattering. This protein showed high thermal stability, with a midpoint of thermal denaturation of 79 °C in dynamic light scattering experiments. This is the first description of the carbohydrate-binding archaeal S-layer protein and its characteristics.


Subject(s)
Acetylglucosamine/metabolism , Archaeal Proteins/metabolism , Pyrococcus horikoshii/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/isolation & purification , Calorimetry/methods , Chromatography, Affinity/methods , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Genes, Archaeal , Green Fluorescent Proteins/metabolism , Hot Temperature , Micrococcus/metabolism , Protein Binding , Protein Conformation , Protein Denaturation , Protein Stability , Scattering, Small Angle , X-Ray Diffraction
8.
Protein Sci ; 26(8): 1574-1583, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28470711

ABSTRACT

The globiferous pedicellariae of the venomous sea urchin Toxopneustes pileolus contains several biologically active proteins. We have cloned the cDNA of one of the toxin components, SUL-I, which is a rhamnose-binding lectin (RBL) that acts as a mitogen through binding to carbohydrate chains on target cells. Recombinant SUL-I (rSUL-I) was produced in Escherichia coli cells, and its carbohydrate-binding specificity was examined with the glycoconjugate microarray analysis, which suggested that potential target carbohydrate structures are galactose-terminated N-glycans. rSUL-I exhibited mitogenic activity for murine splenocyte cells and toxicity against Vero cells. The three-dimensional structure of the rSUL-I/l-rhamnose complex was determined by X-ray crystallographic analysis at a 1.8 Å resolution. The overall structure of rSUL-I is composed of three distinctive domains with a folding structure similar to those of CSL3, a RBL from chum salmon (Oncorhynchus keta) eggs. The bound l-rhamnose molecules are mainly recognized by rSUL-I through hydrogen bonds between its 2-, 3-, and 4-hydroxy groups and Asp, Asn, and Glu residues in the binding sites, while Tyr and Ser residues participate in the recognition mechanism. It was also inferred that SUL-I may form a dimer in solution based on the molecular size estimated via dynamic light scattering as well as possible contact regions in its crystal structure.


Subject(s)
Animal Structures/chemistry , Lectins/chemistry , Marine Toxins/chemistry , Mitogens/chemistry , Rhamnose/chemistry , Sea Urchins/chemistry , Amino Acid Sequence , Animal Structures/physiology , Animals , Binding Sites , Carbohydrate Sequence , Chlorocebus aethiops , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen Bonding , Lectins/genetics , Lectins/metabolism , Lectins/toxicity , Lymphocytes/cytology , Lymphocytes/drug effects , Marine Toxins/genetics , Marine Toxins/metabolism , Marine Toxins/toxicity , Mice , Microarray Analysis , Mitogens/genetics , Mitogens/metabolism , Mitogens/toxicity , Models, Molecular , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhamnose/metabolism , Sea Urchins/physiology , Vero Cells
9.
Sci Rep ; 6: 29135, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27377186

ABSTRACT

A novel mannose-specific lectin, named CGL1 (15.5 kDa), was isolated from the oyster Crassostrea gigas. Characterization of CGL1 involved isothermal titration calorimetry (ITC), glycoconjugate microarray, and frontal affinity chromatography (FAC). This analysis revealed that CGL1 has strict specificity for the mannose monomer and for high mannose-type N-glycans (HMTGs). Primary structure of CGL1 did not show any homology with known lectins but did show homology with proteins of the natterin family. Crystal structure of the CGL1 revealed a unique homodimer in which each protomer was composed of 2 domains related by a pseudo two-fold axis. Complex structures of CGL1 with mannose molecules showed that residues have 8 hydrogen bond interactions with O1, O2, O3, O4, and O5 hydroxyl groups of mannose. The complex interactions that are not observed with other mannose-binding lectins revealed the structural basis for the strict specificity for mannose. These characteristics of CGL1 may be helpful as a research tool and for clinical applications.

10.
Biosci Biotechnol Biochem ; 80(10): 1966-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27101707

ABSTRACT

The hemolytic lectin CEL-III forms transmembrane pores in the membranes of target cells. A study on the effect of site-directed mutation at Lys405 in domain 3 of CEL-III indicated that replacements of this residue by relatively smaller residues lead to a marked increase in hemolytic activity, suggesting that moderately destabilizing domain 3 facilitates formation of transmembrane pores through conformational changes.


Subject(s)
Lectins/chemistry , Lectins/genetics , Mutation , Lectins/metabolism , Models, Molecular , Porosity , Protein Conformation, beta-Strand , Protein Domains
11.
J Bacteriol ; 197(21): 3463-71, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26303832

ABSTRACT

UNLABELLED: In the present study, the crystal structure of recombinant diphosphomevalonate decarboxylase from the hyperthermophilic archaeon Sulfolobus solfataricus was solved as the first example of an archaeal and thermophile-derived diphosphomevalonate decarboxylase. The enzyme forms a homodimer, as expected for most eukaryotic and bacterial orthologs. Interestingly, the subunits of the homodimer are connected via an intersubunit disulfide bond, which presumably formed during the purification process of the recombinant enzyme expressed in Escherichia coli. When mutagenesis replaced the disulfide-forming cysteine residue with serine, however, the thermostability of the enzyme was significantly lowered. In the presence of ß-mercaptoethanol at a concentration where the disulfide bond was completely reduced, the wild-type enzyme was less stable to heat. Moreover, Western blot analysis combined with nonreducing SDS-PAGE of the whole cells of S. solfataricus proved that the disulfide bond was predominantly formed in the cells. These results suggest that the disulfide bond is required for the cytosolic enzyme to acquire further thermostability and to exert activity at the growth temperature of S. solfataricus. IMPORTANCE: This study is the first report to describe the crystal structures of archaeal diphosphomevalonate decarboxylase, an enzyme involved in the classical mevalonate pathway. A stability-conferring intersubunit disulfide bond is a remarkable feature that is not found in eukaryotic and bacterial orthologs. The evidence that the disulfide bond also is formed in S. solfataricus cells suggests its physiological importance.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Sulfolobus solfataricus/enzymology , Amino Acid Sequence , Archaeal Proteins/genetics , Carboxy-Lyases/genetics , Crystallography, X-Ray , Disulfides/metabolism , Enzyme Stability , Hot Temperature , Molecular Sequence Data , Sequence Alignment , Substrate Specificity , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/genetics
12.
Biochim Biophys Acta ; 1850(7): 1457-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25869490

ABSTRACT

BACKGROUND: CEL-I is a galactose/N-acetylgalactosamine-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. Its carbohydrate-binding site contains a QPD (Gln-Pro-Asp) motif, which is generally recognized as the galactose specificity-determining motif in the C-type lectins. In our previous study, replacement of the QPD motif by an EPN (Glu-Pro-Asn) motif led to a weak binding affinity for mannose. Therefore, we examined the effects of an additional mutation in the carbohydrate-binding site on the specificity of the lectin. METHODS: Trp105 of EPN-CEL-I was replaced by a histidine residue using site-directed mutagenesis, and the binding affinity of the resulting mutant, EPNH-CEL-I, was examined by sugar-polyamidoamine dendrimer assay, isothermal titration calorimetry, and glycoconjugate microarray analysis. Tertiary structure of the EPNH-CEL-I/mannose complex was determined by X-ray crystallographic analysis. RESULTS: Sugar-polyamidoamine dendrimer assay and glycoconjugate microarray analysis revealed a drastic change in the specificity of EPNH-CEL-I from galactose/N-acetylgalactosamine to mannose. The association constant of EPNH-CEL-I for mannose was determined to be 3.17×10(3) M(-1) at 25°C. Mannose specificity of EPNH-CEL-I was achieved by stabilization of the binding of mannose in a correct orientation, in which the EPN motif can form proper hydrogen bonds with 3- and 4-hydroxy groups of the bound mannose. CONCLUSIONS: Specificity of CEL-I can be engineered by mutating a limited number of amino acid residues in addition to the QPD/EPN motifs. GENERAL SIGNIFICANCE: Versatility of the C-type carbohydrate-recognition domain structure in the recognition of various carbohydrate chains could become a promising platform to develop novel molecular recognition proteins.


Subject(s)
Acetylgalactosamine/metabolism , Galactose/metabolism , Lectins, C-Type/metabolism , Mannose/metabolism , Acetylgalactosamine/chemistry , Amino Acid Motifs/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites/genetics , Binding, Competitive/genetics , Calorimetry/methods , Chromatography, Affinity , Circular Dichroism , Crystallography, X-Ray , Cucumaria/genetics , Cucumaria/metabolism , Galactose/chemistry , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Mannose/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Binding/genetics , Protein Engineering/methods , Protein Structure, Tertiary
13.
Toxicon ; 94: 8-15, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25475394

ABSTRACT

The globiferous pedicellariae of the venomous sea urchin Toxopneustes pileolus contain several biologically active proteins. Among these, a galactose-binding lectin SUL-I isolated from the venom in the large globiferous pedicellariae shows several activities such as mitogenic, chemotactic, and cytotoxic activities through binding to the carbohydrate chains on the cells. We cloned cDNA encoding SUL-I by reverse transcription-PCR using the degenerate primers designed on the basis of the N-terminal amino acid sequence of the protein and expressed the recombinant SUL-I (rSUL-I) in Escherichia coli cells. The SUL-I gene contains an open reading frame of 927 nucleotides corresponding to 308 amino acid residues, including 24 residues of a putative signal sequence. The mature protein with 284 residues is composed of three homologous regions, each showing similarity with the carbohydrate-recognition domains of the rhamnose-binding lectins, which have been mostly found in fish eggs. While rSUL-I exhibited binding activity for several galactose-related sugars, the highest affinity was found for l-rhamnose among carbohydrates tested, confirming that SUL-I is a rhamnose-binding lectin. rSUL-I also showed hemagglutinating activity toward rabbit erythrocytes, indicating the existence of more than one carbohydrate-binding site to cross-link the carbohydrate chains on the cell surface, which may be closely related to its biological activities.


Subject(s)
Erythrocytes/drug effects , Galectins/pharmacology , Hemagglutination/drug effects , Marine Toxins/chemistry , Rhamnose/metabolism , Venoms/chemistry , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Cloning, Molecular , Marine Toxins/pharmacology , Molecular Sequence Data , Rabbits , Sea Urchins/chemistry , Sea Urchins/genetics , Sequence Alignment , Sequence Analysis, Protein , Venoms/pharmacology
14.
Biosci Biotechnol Biochem ; 78(11): 1906-9, 2014.
Article in English | MEDLINE | ID: mdl-25069891

ABSTRACT

The carbohydrate-binding properties of the C-type lectin-like mouse RegIV and glutathione S-transferase-fusion protein (GST-mRegIV) were examined using carbohydrate-containing polyamidoamine dendrimers (PD). GST-mRegIV showed affinity for mannan- and manno-oligosaccharide containing PD. Binding was inhibited by manno-oligosaccharides but not by mannose or other tested carbohydrates, suggesting that the binding site may have an extended structure in contrast with typical C-type lectins.


Subject(s)
Dendrimers/metabolism , Glutathione Transferase/metabolism , Lectins, C-Type/metabolism , Mannose/metabolism , Oligosaccharides/metabolism , Polyamines/chemistry , Animals , Coordination Complexes/chemistry , Dendrimers/chemistry , Glutathione Transferase/genetics , Lectins/chemistry , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Mannose/chemistry , Mice , Models, Molecular , Oligosaccharides/chemistry , Pancreatitis-Associated Proteins
15.
J Biol Chem ; 289(18): 12805-12, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24652284

ABSTRACT

CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-binding domains (domains 1 and 2) and one oligomerization domain (domain 3). After binding to the cell surface carbohydrate chains through domains 1 and 2, domain 3 self-associates to form transmembrane pores, leading to cell lysis or death, which resembles other pore-forming toxins of diverse organisms. To elucidate the pore formation mechanism of CEL-III, the crystal structure of the CEL-III oligomer was determined. The CEL-III oligomer has a heptameric structure with a long ß-barrel as a transmembrane pore. This ß-barrel is composed of 14 ß-strands resulting from a large structural transition of α-helices accommodated in the interface between domains 1 and 2 and domain 3 in the monomeric structure, suggesting that the dissociation of these α-helices triggered their structural transition into a ß-barrel. After heptamerization, domains 1 and 2 form a flat ring, in which all carbohydrate-binding sites remain bound to cell surface carbohydrate chains, stabilizing the transmembrane ß-barrel in a position perpendicular to the plane of the lipid bilayer.


Subject(s)
Lectins/chemistry , Protein Conformation , Protein Multimerization , Protein Structure, Secondary , Animals , Binding Sites , Cell Membrane/metabolism , Crystallography, X-Ray , Cucumaria/metabolism , Hemolysis , Lectins/metabolism , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Scattering, Small Angle , X-Ray Diffraction
16.
Biochemistry ; 53(11): 1742-52, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24559158

ABSTRACT

Cell adhesion mediated by cadherins depends critically on the homophilic trans-dimerization of cadherin monomers from apposing cells, generating the so-called strand-swap dimer (ss-dimer). Recent evidence indicates that the ss-dimer is preceded by an intermediate species known as the X-dimer. Until now, the stabilized form of the X-dimer had only been observed in E-cadherin among the classical type I cadherins. Herein, we report the isolation and characterization of the analogous X-dimer of human P-cadherin. Small-angle X-ray scattering (SAXS) and site-directed mutagenesis data indicates that the overall architecture of the X-dimer of human P-cadherin is similar to that of E-cadherin. The X-dimerization is triggered by Ca(2+) and governed by specific protein-protein interactions. The attachment of three molecules of Ca(2+) with high affinity (Kd = 9 µM) stabilizes the monomeric conformation of P-cadherin (ΔTm = 17 °C). The Ca(2+)-stabilized monomer subsequently dimerizes in the X-configuration by establishing protein-protein interactions that require the first two extracellular domains of the cadherin. The homophilic X-dimerization is very specific, as the presence of the highly homologous E-cadherin does not interfere with the self-recognition of P-cadherin. These data suggest that the X-dimer could play a key role in the specific cell-cell adhesion mediated by human P-cadherin.


Subject(s)
Cadherins/chemistry , Cadherins/metabolism , Protein Multimerization/physiology , Cadherins/genetics , Cell Adhesion/genetics , Cell Adhesion/physiology , Humans , Mutation , Protein Multimerization/genetics , Scattering, Small Angle , Thermodynamics , X-Ray Diffraction/methods
17.
Biochim Biophys Acta ; 1830(8): 4211-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23583369

ABSTRACT

BACKGROUND: CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata that shows Ca(2+)-dependent Gal/GalNAc-binding specificity. This lectin is composed of two carbohydrate-recognition domains (domains 1 and 2) and an oligomerization domain (domain 3) that facilitates CEL-III assembly in the target cell membrane to form ion-permeable pores. METHODS: Several amino acid residues in domain 3 were replaced by alanine, and hemolytic activity of the mutants was examined. RESULTS: K344A, K351A, K405A, K420A and K425A showed marked increases in activity. In particular, K405A had activity that was 360-fold higher than the wild-type recombinant CEL-III and 3.6-fold higher than the native protein purified from sea cucumber. Since these residues appear to play roles in the stabilization of domain 3 through ionic and hydrogen bonding interactions with other residues, the mutations of these residues presumably lead to destabilization of domain 3, which consequently induces the oligomerization of the protein through association of domain 3 in the membrane. In contrast, K338A, R378A and R408A mutants exhibited a marked decrease in hemolytic activity. Since these residues are located on the surface of domain 3 without significant interactions with other residue, they may be involved in the interaction with components of the target cell membrane. CONCLUSIONS: Several amino acid residues, especially basic residues, are found to be involved in the hemolytic activity as well as the oligomerization ability of CEL-III. GENERAL SIGNIFICANCE: The results provide important clues to the membrane pore-forming mechanism of CEL-III, which is also related to that of bacterial pore-forming toxins.


Subject(s)
Hemolysis/drug effects , Lectins/pharmacology , Amino Acid Sequence , Animals , Lectins/chemistry , Molecular Sequence Data , Protein Conformation , Protein Multimerization , Rabbits , Structure-Activity Relationship
18.
Article in English | MEDLINE | ID: mdl-23545649

ABSTRACT

CEL-III is a Ca(2+)-dependent haemolytic lectin isolated from the marine invertebrate Cucumaria echinata. This lectin binds to Gal/GalNAc-containing carbohydrate chains on the cell surface and, after conformational changes, oligomerizes to form ion-permeable pores in cell membranes. CEL-III also forms soluble oligomers similar to those formed in cell membranes upon binding of specific carbohydrates in high-pH and high-salt solutions. These soluble and membrane CEL-III oligomers were crystallized and X-ray diffraction data were collected. Crystals of soluble oligomers and membrane oligomers diffracted X-rays to 3.3 and 4.2 Å resolution, respectively, using synchrotron radiation and the former was found to belong to space group C2. Self-rotation functional analysis of the soluble oligomer crystal suggested that it might be composed of heptameric CEL-III.


Subject(s)
Lectins/chemistry , Sea Cucumbers/chemistry , Animals , Crystallization , Crystallography, X-Ray , Protein Multimerization
19.
Biosci Biotechnol Biochem ; 77(3): 679-81, 2013.
Article in English | MEDLINE | ID: mdl-23470749

ABSTRACT

Hemolytic lectin CEL-III isolated from the sea cucumber Cucumaria echinata forms transmembrane pores by self-oligomerization in target cell membranes. It also formed soluble oligomers in aqueous solution upon binding with specific carbohydrates under conditions of high pH and a high salt concentration. The size of the soluble CEL-III oligomers decreased when treated with detergents such as Triton X-100 and SDS. Small-angle X-ray scattering measurements suggested that the dissociated unit of the oligomer was a tightly associated CEL-III heptamer. Without detergents in solution, these heptamers further assembled into larger 21mer oligomers, comprising three heptamers held together by relatively weak hydrophobic interactions.


Subject(s)
Detergents/pharmacology , Hemolysis , Lectins/chemistry , Protein Multimerization/drug effects , Scattering, Small Angle , X-Ray Diffraction , Protein Structure, Quaternary/drug effects
20.
Protein Pept Lett ; 20(7): 796-801, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23157284

ABSTRACT

CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins.


Subject(s)
Galactose/metabolism , Lectins, C-Type/metabolism , Mannose/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cucumaria , Escherichia coli/genetics , Escherichia coli/metabolism , Galactose/chemistry , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Lectins, C-Type/isolation & purification , Mannose/chemistry , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...