Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 12 10.
Article in English | MEDLINE | ID: mdl-34889186

ABSTRACT

Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).


Subject(s)
Cell Division/physiology , Cell Polarity/physiology , Cell Shape/physiology , Embryo, Nonmammalian/physiology , Embryonic Development/physiology , Urochordata/physiology , Animals
2.
Dev Cell ; 55(6): 695-706.e4, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33207225

ABSTRACT

Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.


Subject(s)
Blastomeres/cytology , Cell Shape , Mitosis , Stress, Mechanical , Animals , Models, Theoretical , Urochordata
3.
Results Probl Cell Differ ; 68: 127-154, 2019.
Article in English | MEDLINE | ID: mdl-31598855

ABSTRACT

Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern.


Subject(s)
Body Patterning , Cell Division , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Urochordata/cytology , Urochordata/embryology , Animals , Fertilization
4.
Curr Opin Cell Biol ; 60: 114-120, 2019 10.
Article in English | MEDLINE | ID: mdl-31288206

ABSTRACT

The spatiotemporal organization of cell divisions constitutes an integral part in the development of multicellular organisms, and mis-regulation of cell divisions can lead to severe developmental defects. Cell divisions have an important morphogenetic function in development by regulating growth and shape acquisition of developing tissues, and, conversely, tissue morphogenesis is known to affect both the rate and orientation of cell divisions. Moreover, cell divisions are associated with an extensive reorganization of the cytoskeleton and adhesion apparatus in the dividing cells that in turn can affect large-scale tissue rheological properties. Thus, the interplay between cell divisions and tissue morphogenesis plays a key role in embryo and tissue morphogenesis.


Subject(s)
Cell Division , Morphogenesis , Animals , Biomechanical Phenomena , Humans , Models, Biological , Rheology , Stress, Physiological
5.
Nat Commun ; 6: 6686, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25819227

ABSTRACT

Left-right asymmetries in the epithalamic region of the brain are widespread across vertebrates, but their magnitude and laterality varies among species. Whether these differences reflect independent origins of forebrain asymmetries or taxa-specific diversifications of an ancient vertebrate feature remains unknown. Here we show that the catshark Scyliorhinus canicula and the lampreys Petromyzon marinus and Lampetra planeri exhibit conserved molecular asymmetries between the left and right developing habenulae. Long-term pharmacological treatments in these species show that nodal signalling is essential to their generation, rather than their directionality as in teleosts. Moreover, in contrast to zebrafish, habenular left-right differences are observed in the absence of overt asymmetry of the adjacent pineal field. These data support an ancient origin of epithalamic asymmetry, and suggest that a nodal-dependent asymmetry programme operated in the forebrain of ancestral vertebrates before evolving into a variable trait in bony fish.


Subject(s)
Functional Laterality/genetics , Gene Expression Regulation, Developmental , Nodal Signaling Ligands/genetics , Petromyzon/genetics , Prosencephalon/embryology , Sharks/genetics , Animals , Base Sequence , Diencephalon/embryology , Diencephalon/metabolism , Embryo, Nonmammalian , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lampreys/genetics , Left-Right Determination Factors/genetics , Left-Right Determination Factors/metabolism , Molecular Sequence Data , Nodal Protein/genetics , Nodal Protein/metabolism , Nodal Signaling Ligands/metabolism , Prosencephalon/metabolism , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
6.
Biol Open ; 3(11): 1098-107, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25361580

ABSTRACT

In order to gain insight into the impact of yolk increase on endoderm development, we have analyzed the mechanisms of endoderm formation in the catshark S. canicula, a species exhibiting telolecithal eggs and a distinct yolk sac. We show that in this species, endoderm markers are expressed in two distinct tissues, the deep mesenchyme, a mesenchymal population of deep blastomeres lying beneath the epithelial-like superficial layer, already specified at early blastula stages, and the involuting mesendoderm layer, which appears at the blastoderm posterior margin at the onset of gastrulation. Formation of the deep mesenchyme involves cell internalizations from the superficial layer prior to gastrulation, by a movement suggestive of ingressions. These cell movements were observed not only at the posterior margin, where massive internalizations take place prior to the start of involution, but also in the center of the blastoderm, where internalizations of single cells prevail. Like the adjacent involuting mesendoderm, the posterior deep mesenchyme expresses anterior mesendoderm markers under the control of Nodal/activin signaling. Comparisons across vertebrates support the conclusion that endoderm is specified in two distinct temporal phases in the catshark as in all major osteichthyan lineages, in line with an ancient origin of a biphasic mode of endoderm specification in gnathostomes. They also highlight unexpected similarities with amniotes, such as the occurrence of cell ingressions from the superficial layer prior to gastrulation. These similarities may correspond to homoplastic traits fixed separately in amniotes and chondrichthyans and related to the increase in egg yolk mass.

SELECTION OF CITATIONS
SEARCH DETAIL
...