Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 19(23): 23513-22, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109229

ABSTRACT

An innovative way to produce chalcogenide glasses and glass-ceramics for infrared devices is reported. This new method of synthesis at low temperature combining ball-milling and sintering by SPS (Spark Plasma Sintering) is a technological breakthrough to produce efficient infrared chalcogenide glasses and glass-ceramics. This technique will offer the possibility to strongly decrease the cost of infrared devices and to produce new chalcogenide glasses. It will also permit to increase the potential of some glass compositions by allowing their shaping at desired dimensions.

2.
J Chem Phys ; 134(24): 244313, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21721636

ABSTRACT

Laser evaporation of carbon rich uranium/carbon alloy targets into condensing argon or neon matrix samples gives weak infrared absorptions that increase on annealing, which can be assigned to new uranium carbon bearing species. New bands at 827.6 cm(-1) in solid argon or 871.7 cm(-1) in neon become doublets with mixed carbon 12 and 13 isotopes and exhibit the 1.0381 carbon isotopic frequency ratio for the UC diatomic molecule. Another new band at 891.4 cm(-1) in argon gives a three-band mixed isotopic spectrum with the 1.0366 carbon isotopic frequency ratio, which is characteristic of the anti-symmetric stretching vibration of a linear CUC molecule. No evidence was found for the lower energy cyclic U(CC) isomer. Other bands at 798.6 and 544.0 cm(-1) are identified as UCH, which has a uranium-carbon triple bond similar to that in UC. Evidence is found for bicyclic U(CC)(2) and tricyclic U(CC)(3). This work shows that U and C atoms react spontaneously to form the uranium carbide U≡C and C≡U≡C molecules with uranium-carbon triple bonds.

3.
J Am Chem Soc ; 132(24): 8484-8, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-20504028

ABSTRACT

Laser evaporation of carbon-rich uranium/carbon alloys followed by atom reactions in a solid argon matrix and trapping at 8 K gives weak infrared absorptions for CUO at 852 and 804 cm(-1). A new band at 827 cm(-1) becomes a doublet with mixed carbon 12 and 13 isotopes and exhibits the 1.0381 isotopic frequency ratio, which is appropriate for the UC diatomic molecule, and another new band at 891 cm(-1) gives a three-band mixed isotopic spectrum with the 1.0366 isotopic frequency ratio, which is characteristic of the linear CUC molecule. CASPT2 calculations with dynamical correlation find the C[triple bond]U[triple bond]C ground state as linear 3Sigma(u)+ with 1.840 A bond length and molecular orbital occupancies for an effective bond order of 2.83. Similar calculations with spin-orbit coupling show that the U[triple bond]C diatomic molecule has a quintet (Lambda = 5, Omega = 3) ground state, a similar 1.855 A bond length, and a fully developed triple bond of 2.82 effective bond order.

SELECTION OF CITATIONS
SEARCH DETAIL
...