Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 33(5): 692-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25639189

ABSTRACT

Linear growth failure results from a broad spectrum of systemic and local disorders that can generate chronic musculoskeletal disability. Current bone lengthening protocols involve invasive surgeries or drug regimens, which are only partially effective. Exposure to warm ambient temperature during growth increases limb length, suggesting that targeted heat could noninvasively enhance bone elongation. We tested the hypothesis that daily heat exposure on one side of the body unilaterally increases femoral and tibial lengths. Mice (N = 20) were treated with 40 °C unilateral heat for 40 min/day for 14 days post-weaning. Non-treated mice (N = 6) served as controls. Unilateral increases in ear (8.8%), hindfoot (3.5%), femoral (1.3%), and tibial (1.5%) lengths were obtained. Tibial elongation rate was > 12% greater (15 µm/day) on the heat-treated side. Extremity lengthening correlated with temperature during treatment. Body mass and humeral length were unaffected. To test whether differences persisted in adults, mice were examined 7-weeks post-treatment. Ear area, hindfoot, femoral, and tibial lengths were still significantly increased ∼6%, 3.5%, 1%, and 1%, respectively, on the heat-treated side. Left-right differences were absent in non-treated controls, ruling out inherent side asymmetry. This model is important for designing noninvasive heat-based therapies to potentially combat a range of debilitating growth impediments in children.


Subject(s)
Bone Lengthening , Hot Temperature , Animals , Female , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...