Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vector Borne Zoonotic Dis ; 5(1): 1-10, 2005.
Article in English | MEDLINE | ID: mdl-15815144

ABSTRACT

West Nile virus (WN), an agent of significant human and veterinary disease, is endemic in the Old World and rapidly spreading throughout the Americas. Vaccines are needed to halt the geographic expansion of this virus and prevent disease where it is established. However, to preclude introduction of a vaccine virus into the environment, a live attenuated WN vaccine should have low potential for transmission by mosquitoes. A chimeric WN vaccine candidate was previously generated by replacing the membrane and envelope structural protein genes of recombinant dengue type 4 virus (rDEN4) with those of WN; a derivative of this virus, WN/DEN4-3'delta30, contains a 30-nucleotide deletion in the 3' untranslated region. To assess the potential for transmission by mosquitoes of these vaccine candidates, the ability of each chimeric virus to infect the mosquito midgut, disseminate to the head, and pass into the saliva was compared to that of their wild-type parental WN and DEN4 viruses in three vector species. The WN/DEN4 chimeric viruses were significantly attenuated in both Culex tarsalis, a vector able to transmit WN but not dengue, and in Ae. aegypti, a vector able to transmit dengue but not WN. However, the chimeric viruses were as infectious as either wild-type virus for Ae. albopictus, a vector able to transmit both dengue and WN. These results indicate that chimerization caused a contraction in vector host range rather than universal attenuation for mosquitoes per se. This restriction in potential vectors renders it less likely that WN/DEN4 and WN/DEN4-3'delta30 would be transmitted from vaccinees to mosquitoes.


Subject(s)
Culicidae/virology , Dengue Virus/immunology , Dengue/transmission , Insect Vectors/virology , West Nile Fever/transmission , West Nile virus/immunology , Aedes/virology , Animals , Chlorocebus aethiops , Culex/virology , Dengue/prevention & control , Dengue Virus/pathogenicity , Humans , Recombinant Fusion Proteins/immunology , Species Specificity , Vaccines, Attenuated/immunology , Vero Cells , Viral Vaccines/immunology , West Nile Fever/prevention & control , West Nile virus/pathogenicity
2.
J Med Entomol ; 40(6): 743-6, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14765647

ABSTRACT

Three California Culex species previously identified as efficient laboratory vectors of West Nile (WN) virus were tested for their capability to vertically transmit WN virus. Wild-caught Culex pipiens pipiens L., Culex pipiens quinquefasciatus Say, and two populations of Culex tarsalis Coquillett females were inoculated intrathoracically with 10(2.7 +/- 0.1) plaque-forming units of WN virus. F1 progeny were reared at 18 degrees C and subsequently tested as adults for infectious virus on Vero cell culture. Virus was not detected in 197 pools comprising 4,884 Cx. p. pipiens. The minimum filial infection rate (MFIR) for Cx. p. quinquefasciatus was approximately 3.0/1,000 for 665 progeny tested in 28 pools. There was no virus detected in 102 pools of 2,453 progeny from Cx. tarsalis collected in Riverside County. The MFIR for Cx. tarsalis collected in Yolo County was approximately 6.9/1,000 for 2,165 progeny tested in 86 pools. Mosquito progeny infected vertically during the fall could potentially serve as a mechanism for WN virus to overwinter and initiate horizontal transmission the following spring.


Subject(s)
Culex/virology , West Nile Fever/transmission , West Nile virus/pathogenicity , Animals , California , Culex/classification , Female , Humans , Infectious Disease Transmission, Vertical , Species Specificity , West Nile Fever/epidemiology , West Nile virus/isolation & purification
3.
Emerg Infect Dis ; 8(12): 1385-91, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12498652

ABSTRACT

To identify the mosquito species competent for West Nile virus (WNV) transmission, we evaluated 10 California species that are known vectors of other arboviruses or major pests: Culex tarsalis, Cx. pipiens pipiens, Cx. p. quinquefasciatus, Cx. stigmatosoma, Cx. erythrothorax, Ochlerotatus dorsalis, Oc. melanimon, Oc. sierrensis, Aedes vexans, and Culiseta inornata. All 10 became infected and were able to transmit WNV at some level. Ochlerotatus, Culiseta, and Aedes were low to moderately efficient vectors. They feed primarily on mammals and could play a secondary role in transmission. Oc. sierrensis, a major pest species, and Cx. p. quinquefasciatus from southern California were the least efficient laboratory vectors. Cx. tarsalis, Cx. stigmatosoma, Cx. erythrothorax, and other populations of Cx. pipiens complex were the most efficient laboratory vectors. Culex species are likely to play the primary role in the enzootic maintenance and transmission of WNV in California.


Subject(s)
Culex/virology , Disease Vectors/classification , West Nile Fever/transmission , West Nile virus/isolation & purification , Animals , California
SELECTION OF CITATIONS
SEARCH DETAIL
...