Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 10(6)2019 12 17.
Article in English | MEDLINE | ID: mdl-31848280

ABSTRACT

Two Shigella species, Shigella flexneri and Shigella sonnei, cause approximately 90% of bacterial dysentery worldwide. While S. flexneri is the dominant species in low-income countries, S. sonnei causes the majority of infections in middle- and high-income countries. S. flexneri is a prototypic cytosolic bacterium; once intracellular, it rapidly escapes the phagocytic vacuole and causes pyroptosis of macrophages, which is important for pathogenesis and bacterial spread. In contrast, little is known about the invasion, vacuole escape, and induction of pyroptosis during S. sonnei infection of macrophages. We demonstrate here that S. sonnei causes substantially less pyroptosis in human primary monocyte-derived macrophages and THP1 cells. This is due to reduced bacterial uptake and lower relative vacuole escape, which results in fewer cytosolic S. sonnei and hence reduced activation of caspase-1 inflammasomes. Mechanistically, the O-antigen (O-Ag), which in S. sonnei is contained in both the lipopolysaccharide and the capsule, was responsible for reduced uptake and the type 3 secretion system (T3SS) was required for vacuole escape. Our findings suggest that S. sonnei has adapted to an extracellular lifestyle by incorporating multiple layers of O-Ag onto its surface compared to other Shigella species.IMPORTANCE Diarrheal disease remains the second leading cause of death in children under five. Shigella remains a significant cause of diarrheal disease with two species, S. flexneri and S. sonnei, causing the majority of infections. S. flexneri are well known to cause cell death in macrophages, which contributes to the inflammatory nature of Shigella diarrhea. Here, we demonstrate that S. sonnei causes less cell death than S. flexneri due to a reduced number of bacteria present in the cell cytosol. We identify the O-Ag polysaccharide which, uniquely among Shigella spp., is present in two forms on the bacterial cell surface as the bacterial factor responsible. Our data indicate that S. sonnei differs from S. flexneri in key aspects of infection and that more attention should be given to characterization of S. sonnei infection.


Subject(s)
Dysentery, Bacillary/metabolism , Dysentery, Bacillary/microbiology , Host-Pathogen Interactions/immunology , Inflammasomes/metabolism , O Antigens/immunology , Shigella sonnei/physiology , Vacuoles/metabolism , Endocytosis/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Models, Biological , Pyroptosis/immunology , Type III Secretion Systems
2.
Cell Rep ; 27(4): 1008-1017.e6, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31018119

ABSTRACT

Microbial infections can stimulate the assembly of inflammasomes, which activate caspase-1. The gastrointestinal pathogen enteropathogenic Escherichia coli (EPEC) causes localized actin polymerization in host cells. Actin polymerization requires the binding of the bacterial adhesin intimin to Tir, which is delivered to host cells via a type 3 secretion system (T3SS). We show that EPEC induces T3SS-dependent rapid non-canonical NLRP3 inflammasome activation in human macrophages. Notably, caspase-4 activation by EPEC triggers pyroptosis and cytokine processing through the NLRP3-caspase-1 inflammasome. Mechanistically, caspase-4 activation requires the detection of LPS and EPEC-induced actin polymerization, either via Tir tyrosine phosphorylation and the phosphotyrosine-binding adaptor NCK or Tir and the NCK-mimicking effector TccP. An engineered E. coli K12 could reconstitute Tir-intimin signaling, which is necessary and sufficient for inflammasome activation, ruling out the involvement of other virulence factors. Our studies reveal a crosstalk between caspase-4 and caspase-1 that is cooperatively stimulated by LPS and effector-driven actin polymerization.


Subject(s)
Caspases, Initiator/physiology , Enteropathogenic Escherichia coli/pathogenicity , Macrophages/microbiology , Actins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Caspase 1/physiology , Caspases, Initiator/genetics , Caspases, Initiator/metabolism , Host-Pathogen Interactions , Humans , Inflammasomes/physiology , Models, Biological , Polymerization
3.
Curr Top Microbiol Immunol ; 416: 73-115, 2018.
Article in English | MEDLINE | ID: mdl-30178263

ABSTRACT

Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection.


Subject(s)
Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Host-Pathogen Interactions/physiology , Type III Secretion Systems/metabolism , Actin Cytoskeleton/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , GTP Phosphohydrolases/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate
4.
Cell Rep ; 18(5): 1285-1297, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28147281

ABSTRACT

Caspase-1 activation by inflammasome signaling scaffolds initiates inflammation and antimicrobial responses. Caspase-1 proteolytically converts newly induced pro-interleukin 1 beta (IL-1ß) into its mature form and directs its secretion, triggering pyroptosis and release of non-substrate alarmins such as interleukin 1 alpha (IL-1α) and HMGB1. While some caspase-1 substrates involved in these events are known, the identities and roles of non-proteolytic targets remain unknown. Here, we use unbiased proteomics to show that the UBE2L3 ubiquitin conjugase is an indirect target of caspase-1. Caspase-1, but not caspase-4, controls pyroptosis- and ubiquitin-independent proteasomal degradation of UBE2L3 upon canonical and non-canonical inflammasome activation by sterile danger signals and bacterial infection. Mechanistically, UBE2L3 acts post-translationally to promote K48-ubiquitylation and turnover of pro-IL-1ß and dampen mature-IL-1ß production. UBE2L3 depletion increases pro-IL-1ß levels and mature-IL-1ß secretion by inflammasomes. These findings regarding UBE2L3 as a molecular rheostat have implications for IL-1-driven pathology in hereditary fever syndromes and in autoinflammatory conditions associated with UBE2L3 polymorphisms.


Subject(s)
Caspase 1/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Animals , Inflammation/metabolism , Mice , Protein Transport/physiology , Proteomics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...