Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 26(3): 416-426, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37592756

ABSTRACT

Dyes are frequently used in industries such as textile, leather, paper and printing, to water sources causes harmful effects on the environment and human health. Therefore, it is crucial to effectively remove colored contaminants from water in order to protect the environment and public health, maintain biodiversity and preserve the esthetic aspects of water resources. In this study, wood chips obtained from Pinus brutia (PB) tree grown in many parts of the world were turned into biochar and then modified and used for the removal of malachite green, a cationic dye. For this purpose, biochar (PBB) was made by collecting PB wood and turning it into chips (PB). Later, PBB was modified to gain nano-magnetic properties. The structure of the obtained PBB and nM-PBB adsorbents was characterized by FT-IR. pH (2-9), temperature (25 °C-55 °C), time change (15 min-240 min), adsorbent amount change (0.05 g-0.45g) and MG concentration (25 mg/L-250 mg/L) were investigated in MG removal of PBB and nM-PBB. The process was found to be pseudo-second-order and spontaneous endothermic reaction. PBB and nM-PBB were found to be suitable for Langmuir isotherm in MG removal (qmax=13.004 mg/g for PBB, qmax=18.215 mg/g for nM-PBB).


Various adsorbents are used to remove different substances from water. The use of pinus brutia tree, which is a biochar product, in the removal of malachite green dyes from aqueous solutions has not been found in the literature. The findings revealed that Pinus brutia could be used to extract malachite green, a cationic dyestuff. Pinus brutia is a widely distributed, easy-to-access, low-cost species with many uses. Our study, in which Pinus brutian is used as an adsorbent, will contribute to the literature in this respect, and its use in the removal of different anionic and cationic dyes will be discussed in the future.


Subject(s)
Charcoal , Pinus , Rosaniline Dyes , Water Pollutants, Chemical , Humans , Coloring Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogen-Ion Concentration , Biodegradation, Environmental , Water , Kinetics , Thermodynamics
2.
Int J Phytoremediation ; 24(3): 311-323, 2022.
Article in English | MEDLINE | ID: mdl-34134559

ABSTRACT

Batch sorption experiments were performed to investigate the potential of Bauhinia variagata fruit (BVf) and nano-magnetic Bauhinia variagata fruit (nM-BVf) to remove methylene blue (MB) and malachite green (MG). Equilibrium studies have been carried out using various experimental parameters such as the amount of biosorbent, initial solution concentration, contact time, pH, and temperature. The Langmuir, Freundlich, Scatchard, D-R and Temkin adsorption models were applied for the experimental information of MB and MG. The Freundlich model fits better than the Langmuir model. Freundlich model confirmed the magnificent dye sorption ability; 19.3 mg/g for BVf/MB, 21.2 mg/g for nM-BVf/MB, 19.7 mg/g for BVf/MG, and 30.1 mg/g for nM-BVf/MG. The pseudo-second-order kinetic model displayed a more suitable behavior to the experimental result for the removal of MG and MB. Thermodynamic parameters such as changes in Gibbs free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo) were investigated and the fine details in the adsorption system were completed. The conclusion from this study is that the prepared nano biosorbent can be efficient for the removal of cationic dyes from wastewater.


Subject(s)
Bauhinia , Water Pollutants, Chemical , Adsorption , Biodegradation, Environmental , Fruit , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Methylene Blue , Rosaniline Dyes , Thermodynamics , Water
3.
Environ Sci Pollut Res Int ; 20(1): 558-67, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22729876

ABSTRACT

This paper highlights the utility of riverbed sand (RS) for the treatment of Ni(II) from aqueous solutions. For enhancement of removal efficiency, RS was modified by simple methods. Raw and modified sands were characterized by scanning electron microscope (SEM), Energy Dispersive Spectroscopy (EDS), and Fourier Transform Infrared Spectroscopy (FTIR) to investigate the effect of modifying the surface of RS. For optimization of various important process parameters, batch mode experiments were conducted by choosing specific parameters such as pH (4.0-8.0), adsorbent dose (1.0-2.0 g), and metal ion concentrations (5-15 mg/L). Removal efficiency decreased from 68.76 to 54.09 % by increasing the concentration of Ni(II) in solution from 5 to 15 mg/L. Removal was found to be highly dependent on pH of aqueous solutions and maximum removal was achieved at pH 8.0. The process of removal follows first-order kinetics, and the value of rate constant was found to be 0.048 min(-1) at 5 mg/L and 25 °C. Value of intraparticle diffusion rate constant (k(id)) was found to be 0.021 mg/g min(1/2) at 25 °C. Removal of Ni(II) decreased by increasing temperature which confirms exothermic nature of this system. For equilibrium studies, adsorption data was analyzed by Freundlich and Langmuir models. Thermodynamic studies for the present process were performed by determining the values of ΔG°, ΔH°, and ΔS°. Negative value of ∆H° further confirms the exothermic nature of the removal process. The results of the present investigation indicate that modified riverbed sand (MRS) has high potential for the removal of Ni(II) from aqueous solutions, and resultant data can serve as baseline data for designing treatment plants at industrial scale.


Subject(s)
Nickel/chemistry , Silicon Dioxide/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Nickel/analysis , Water Pollutants, Chemical/analysis
4.
J Hazard Mater ; 152(3): 1201-7, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-17826899

ABSTRACT

The adsorption of Cr(VI) from aqueous solutions on sawdust (SD), base extracted sawdust (BESD) and tartaric acid modified sawdust (TASD) of Turkish red pine tree (Pinus nigra), a timber industry waste, was studied at varying Cr(VI) concentrations, adsorbent dose, modifier concentration and pH. Batch adsorption studies have been carried out. Sawdust was collected from waste timber industry and modified with various amount of tartaric acid (TA) (0.1-1.5M). The batch sorption kinetics has been tested and the applicability of the Langmuir and Freundlich adsorption isotherms for the present system has been tested at 25+/-2 degrees C. Under observed test conditions, the equilibrium adsorption data fits the linear Freundlich isotherms. An initial pH of 3.0 was most favorable for Cr(VI) removal by all adsorbents. Maximum Cr(VI) was sequestered from the solution within 120 min after the beginning for every experiment. The experimental result inferred that chelation and ion exchange is one of the major adsorption mechanisms for binding metal ions to the SD. Percentage removal of Cr(VI) was maximum at the initial pH of 3.0 (87.7, 70.6 and 55.2% by TASD, BESD, and SD, respectively). Adsorption capacities range from 8.3 to 22.6 mg/g for SD samples.


Subject(s)
Chromium/isolation & purification , Pinus/chemistry , Adsorption , Hydrogen-Ion Concentration , Osmolar Concentration , Solutions , Spectroscopy, Fourier Transform Infrared , Water
5.
Bioresour Technol ; 99(6): 1981-91, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17482456

ABSTRACT

In the present study, adsorption of Cr(III) and Cr(VI) on Pumice (Pmc), Yarikkaya (YK) brown coal, Chelex-100, and Lewatit MP 62 is examined at room temperature and at initial chromium concentration of 1.0 x 10(-3) mol/L. Column method was carried out as a function of pH, concentration of Cr(III) and Cr(VI) ions, volume of samples and flow rate. The experimental data were evaluated by Freundlich and Langmuir isotherm models. The dynamic breakthrough capacities of the adsorbents for Cr(III) and Cr(VI) were calculated. The maximum chromium sorption occurred at 5 mL/min flow rate and 25 mL volume for all adsorbents. The results showed that the two readily available adsorbents namely Pmc and YK, were suitable for removing chromium from aqueous solution.


Subject(s)
Biotechnology/instrumentation , Biotechnology/methods , Chromium/chemistry , Coal , Resins, Synthetic/chemistry , Silicates/chemistry , Adsorption , Chelating Agents/chemistry , Chromatography, Ion Exchange/methods , Hydrogen-Ion Concentration , Industrial Waste , Ion Exchange Resins/chemistry , Ions , Temperature , Time Factors , Water/chemistry
6.
Bioresour Technol ; 98(4): 904-11, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16635570

ABSTRACT

In the present study, the removal of Cr(III) from aqueous solution was studied using a new chelate-resins (b-DAEG-sporopollenin and CEP-sporopollenin). Mechanisms including ion exchange, complexation and adsorption to the surface are possible in the sorption process. Adsorption analysis results obtained at various concentrations of Cr(III) showed that the adsorption pattern on the resin followed a Langmuir isotherm. Langmuir constant Gamma max and k for Cr(III) were found as 1.23, 84.84 mmol/g for b-DAEG-sporopollenin, 133.33, 10.39 mmol/g for CEP-sporopollenin at 20 +/- 1 degrees C, respectively. In addition, kinetic and thermodynamic parameters such as enthalpy (DeltaH0), free energy (DeltaG0) and entropy (DeltaS0) were calculated and these values show that adsorption of Cr(III) on b-DAEG-sporopollenin and CEP-sporopollenin was an exothermic process and the process of adsorption was favored at high temperatures. Maximum Cr(III) removal was observed near a pH of 6.


Subject(s)
Biopolymers/chemistry , Carotenoids/chemistry , Chelating Agents/chemistry , Chromium/chemistry , Adsorption , Hydrogen-Ion Concentration , Temperature
7.
J Hazard Mater ; 136(2): 330-7, 2006 Aug 21.
Article in English | MEDLINE | ID: mdl-16439060

ABSTRACT

The removal of the Cr(III) ion from aqueous solutions with the Lewatit S 100 ion-exchange resin is described; and the performance of this resin was compared with Chelex-100 resin. The effect of adsorbent dose, initial metal concentration, contact time, pH and temperature on the removal of Cr(III) was investigated. Lewatit S 100 shows a remarkable increase in sorption capacity for Cr(III). The Batch ion-exchange process was relatively fast; and it reached equilibrium after about 150 min of contact. The ion-exchange process, which is pH dependent show maximum removal of Cr(III) in the pH range 2.8-4.0 for an initial Cr(III) concentration of 1.0 x 10(-3)M. The equilibrium constants were 36.67 at pH value 3.5 for Lewatit S 100 and 6.64 at pH value 4.5 for Chelex-100 resin. Both of the resins had high-bonding constants. The equilibrium related to their ion-exchange capacity and the amount of the ion exchange was obtained by using the plots of the Langmuir adsorption isotherm. It was observed that the maximum ion-exchange capacity of 0.39 mmol of Cr(III)/g for Lewatit S 100 and 0.29 mmol of Cr(III)/g for Chelex-100 was achieved at optimum pH values of 3.5 and 4.5, respectively. The thermodynamic equilibrium constant and the Gibbs free energy flow were calculated for each system. The ion exchange of Cr(III) on these cation-exchange resins followed first-order reversible kinetics. The intra-particle diffusion of Cr(III) on ion-exchange resin represented the rate-limiting step. The rise in temperature caused a slight increase in the value of the equilibrium constant (K(c)) for the sorption of Cr(III) ion for both resins.


Subject(s)
Chromium/isolation & purification , Hydrogen-Ion Concentration , Temperature , Time Factors , Water Pollutants, Chemical/isolation & purification , Solutions , Thermodynamics , Water
8.
J Hazard Mater ; 119(1-3): 175-82, 2005 Mar 17.
Article in English | MEDLINE | ID: mdl-15752863

ABSTRACT

The sorption of hexavalent chromium, Cr(VI), from aqueous solutions on macroporous resins containing tertiary amine groups (Lewatit MP 62 and Lewatit M 610) was studied at varying Cr(VI) concentrations, adsorbent dose, pH, contact time and temperatures. The concentration of chromium in aqueous solution was determined by inductively coupled plasma spectrometry (ICP-AES). Batch shaking sorption experiments were carried out to evaluate the performance of Lewatit MP 62 and Lewatit M 610 anion exchange resins in the removal of Cr(VI) from aqueous solutions. The ion-exchange process, which is pH dependent, shows maximum removal of Cr(VI) in the pH range 2-6 for an initial Cr(VI) concentration of 100 ppm. The sorption increases with the decrease in pH and slightly decreases with the increase in temperature. Both ion exchangers had high bonding constants with Lewatit M 610 showing stronger binding. It was observed that the maximum adsorption capacity of 0.40 mmol of Cr(VI)/g for Lewatit MP 62 and 0.41 mmol of Cr(VI)/g for Lewatit M 610 was achieved at pH of 5.0. The thermodynamic parameters (free energy change, DeltaG degrees ; enthalpy change, DeltaS degrees ; and entropy change, DeltaH degrees ) for the sorption have been evaluated. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr(VI) ion. The sorption of Cr(VI) on the resin was rapid during the first 15 min and equilibrium was found to be attained within 30 min. The sorption of Cr(VI) onto the resins followed reversible first-order rate kinetics. Such ion exchange resins can be used for the efficient removal of chromium from water and wastewater.


Subject(s)
Anion Exchange Resins/chemistry , Carcinogens, Environmental/isolation & purification , Chromium/chemistry , Chromium/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Temperature , Water Pollutants/isolation & purification
9.
J Colloid Interface Sci ; 282(1): 20-5, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15576076

ABSTRACT

The adsorption of copper(II), zinc(II), nickel(II), lead(II), and cadmium(II) on Amberlite IR-120 synthetic sulfonated resin has been studied at different pH and temperatures by batch process. The effects of parameters such as amount of resin, resin contact time, pH, and temperature on the ion exchange separation have been investigated. For the determination of the adsorption behavior of the resin, the adsorption isotherms of metal ions have also been studied. The concentrations of metal ions have been measured by batch techniques and with AAS analysis. Adsorption analysis results obtained at various concentrations showed that the adsorption pattern on the resin followed Freundlich isotherms. Here we report the method that is applied for the sorption/separation of some toxic metals from their solutions.


Subject(s)
Environmental Pollutants/isolation & purification , Metals, Heavy/isolation & purification , Polystyrenes , Adsorption , Cadmium/isolation & purification , Copper/isolation & purification , Environmental Pollution/prevention & control , Lead/isolation & purification , Nickel/isolation & purification , Solutions , Zinc/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...