Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766106

ABSTRACT

Human pluripotent stem cells (hPSCs) maintain diploid populations for generations despite a persistently high rate of mitotic errors that cause aneuploidy, or chromosome imbalances. Consequently, to maintain genome stability, aneuploidy must inhibit hPSC proliferation, but the mechanisms are unknown. Here, we surprisingly find that homogeneous aneuploid populations of hPSCs proliferate unlike aneuploid non-transformed somatic cells. Instead, in mosaic populations, cell non-autonomous competition between neighboring diploid and aneuploid hPSCs eliminates less fit aneuploid cells. Aneuploid hPSCs with lower Myc or higher p53 levels relative to diploid neighbors are outcompeted but conversely gain a selective advantage when Myc and p53 relative abundance switches. Thus, although hPSCs frequently missegregate chromosomes and inherently tolerate aneuploidy, Myc- and p53-driven cell competition preserves their genome integrity. These findings have important implications for the use of hPSCs in regenerative medicine and for how diploid human embryos are established despite the prevalence of aneuploidy during early development.

2.
Stem Cell Reports ; 18(2): 475-488, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36638786

ABSTRACT

During in vitro propagation, human pluripotent stem cells (hPSCs) frequently become aneuploid with incorrect chromosome numbers due to mitotic chromosome segregation errors. Yet, it is not understood why hPSCs exhibit a low mitotic fidelity. Here, we investigate the mechanisms responsible for mitotic errors in hPSCs and show that the primary cause is lagging chromosomes in anaphase with improper merotelic microtubule attachments. Accordingly, short-term treatment (<24 h) with small molecules that prolong mitotic duration or destabilize chromosome microtubule attachments reduces merotelic errors and lagging chromosome rates, although hPSCs adapt and lagging chromosome rates rebound upon long-term (>24 h) microtubule destabilization. Strikingly, we also demonstrate that mitotic error rates correlate with developmental potential decreasing or increasing upon loss or gain of pluripotency, respectively. Thus, a low mitotic fidelity is an inherent and conserved phenotype of hPSCs. Moreover, chromosome segregation fidelity depends on developmental state in normal human cells.


Subject(s)
Chromosome Segregation , Kinetochores , Humans , Mitosis , Microtubules , Anaphase , Spindle Apparatus
3.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38187612

ABSTRACT

To ensure genomic fidelity a series of spatially and temporally coordinated events are executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown if Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.

4.
J Cell Biol ; 221(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35878017

ABSTRACT

Kinetochore protein phosphorylation promotes the correction of erroneous microtubule attachments to ensure faithful chromosome segregation during cell division. Determining how phosphorylation executes error correction requires an understanding of whether kinetochore substrates are completely (i.e., all-or-none) or only fractionally phosphorylated. Using quantitative mass spectrometry (MS), we measured phospho-occupancy on the conserved kinetochore protein Hec1 (NDC80) that directly binds microtubules. None of the positions measured exceeded ∼50% phospho-occupancy, and the cumulative phospho-occupancy changed by only ∼20% in response to changes in microtubule attachment status. The narrow dynamic range of phospho-occupancy is maintained, in part, by the ongoing phosphatase activity. Further, both Cdk1-Cyclin B1 and Aurora kinases phosphorylate Hec1 to enhance error correction in response to different types of microtubule attachment errors. The low inherent phospho-occupancy promotes microtubule attachment to kinetochores while the high sensitivity of kinetochore-microtubule attachments to small changes in phospho-occupancy drives error correction and ensures high mitotic fidelity.


Subject(s)
Cytoskeletal Proteins , Kinetochores , Microtubules , Mitosis , Aurora Kinases/metabolism , CDC2 Protein Kinase/metabolism , Chromosome Segregation , Cyclin B1/metabolism , Cytoskeletal Proteins/metabolism , HeLa Cells , Humans , Kinetochores/metabolism , Microtubules/metabolism , Phosphorylation
5.
BMC Med Genomics ; 12(1): 79, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31151460

ABSTRACT

BACKGROUND: Intra-tumor heterogeneity stems from genetic, epigenetic, functional, and environmental differences among tumor cells. A major source of genetic heterogeneity comes from DNA sequence differences and/or whole chromosome and focal copy number variations (CNVs). Whole chromosome CNVs are caused by chromosomal instability (CIN) that is defined by a persistently high rate of chromosome mis-segregation. Accordingly, CIN causes constantly changing karyotypes that result in extensive cell-to-cell genetic heterogeneity. How the genetic heterogeneity caused by CIN influences gene expression in individual cells remains unknown. METHODS: We performed single-cell RNA sequencing on a chromosomally unstable glioblastoma cancer stem cell (CSC) line and a control normal, diploid neural stem cell (NSC) line to investigate the impact of CNV due to CIN on gene expression. From the gene expression data, we computationally inferred large-scale CNVs in single cells. Also, we performed copy number adjusted differential gene expression analysis between NSCs and glioblastoma CSCs to identify copy number dependent and independent differentially expressed genes. RESULTS: Here, we demonstrate that gene expression across large genomic regions scales proportionally to whole chromosome copy number in chromosomally unstable CSCs. Also, we show that the differential expression of most genes between normal NSCs and glioblastoma CSCs is largely accounted for by copy number alterations. However, we identify 269 genes whose differential expression in glioblastoma CSCs relative to normal NSCs is independent of copy number. Moreover, a gene signature derived from the subset of genes that are differential expressed independent of copy number in glioblastoma CSCs correlates with tumor grade and is prognostic for patient survival. CONCLUSIONS: These results demonstrate that CIN is directly responsible for gene expression changes and contributes to both genetic and transcriptional heterogeneity among glioblastoma CSCs. These results also demonstrate that the expression of some genes is buffered against changes in copy number, thus preserving some consistency in gene expression levels from cell-to-cell despite the continuous change in karyotype driven by CIN. Importantly, a gene signature derived from the subset of genes whose expression is buffered against copy number alterations correlates with tumor grade and is prognostic for patient survival that could facilitate patient diagnosis and treatment.


Subject(s)
Chromosomal Instability , Glioblastoma/genetics , Glioblastoma/pathology , Neoplastic Stem Cells/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Cell Line, Tumor , Gene Expression Profiling , Humans , Neoplasm Grading , Neoplastic Stem Cells/pathology , Neural Stem Cells/metabolism , Survival Analysis
6.
Methods Cell Biol ; 144: 15-32, 2018.
Article in English | MEDLINE | ID: mdl-29804667

ABSTRACT

Cell viability requires accurate chromosome segregation during meiosis and mitosis so that the daughter cells produced have the correct chromosome complement. In contrast, chromosome segregation errors lead to aneuploidy, a state of abnormal chromosome numbers. Furthermore, a persistently high rate of chromosome segregation errors causes the related phenomenon of whole chromosomal instability (w-CIN). Aneuploidy and w-CIN are common characteristics of several human conditions and diseases including birth defects and cancers. Thus, methods to measure aneuploidy and w-CIN have important research applications in many areas of cell biology. In this chapter, we describe methods to measure chromosome missegregation rates and aneuploid cell survival with a focus on cells grown in culture; however, we also highlight methods that are amenable to primary tissue samples. Together, these methods provide a comprehensive approach to determining the frequency of aneuploidy and w-CIN in cells.


Subject(s)
Aneuploidy , Chromosomal Instability/genetics , Cytological Techniques/methods , Biological Assay , Cell Line, Tumor , Cell Survival , Chromosome Segregation , Chromosomes, Human/metabolism , Fluorescent Antibody Technique , Humans , In Situ Hybridization, Fluorescence , Mitosis
7.
Nat Commun ; 7: 13465, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27811920

ABSTRACT

Centromeres are specified epigenetically through the deposition of the centromere-specific histone H3 variant CENP-A. However, how additional epigenetic features are involved in centromere specification is unknown. Here, we find that histone H4 Lys5 and Lys12 acetylation (H4K5ac and H4K12ac) primarily occur within the pre-nucleosomal CENP-A-H4-HJURP (CENP-A chaperone) complex, before centromere deposition. We show that H4K5ac and H4K12ac are mediated by the RbAp46/48-Hat1 complex and that RbAp48-deficient DT40 cells fail to recruit HJURP to centromeres and do not incorporate new CENP-A at centromeres. However, C-terminally-truncated HJURP, that does not bind CENP-A, does localize to centromeres in RbAp48-deficient cells. Acetylation-dead H4 mutations cause mis-localization of the CENP-A-H4 complex to non-centromeric chromatin. Crucially, CENP-A with acetylation-mimetic H4 was assembled specifically into centromeres even in RbAp48-deficient DT40 cells. We conclude that H4K5ac and H4K12ac, mediated by RbAp46/48, facilitates efficient CENP-A deposition into centromeres.


Subject(s)
Centromere Protein A/metabolism , Centromere/metabolism , Histones/metabolism , Molecular Chaperones/metabolism , Nucleosomes/metabolism , Acetylation , Animals , Cell Line, Tumor , Centromere/genetics , Centromere Protein A/genetics , Chickens , Chromatin/metabolism , Epigenesis, Genetic , Histones/genetics , Humans , Lysine/metabolism , Molecular Chaperones/genetics , Mutation , Nucleosomes/genetics , Retinoblastoma-Binding Protein 4/metabolism , Retinoblastoma-Binding Protein 7/metabolism
8.
Cancer Discov ; 6(5): 532-45, 2016 05.
Article in English | MEDLINE | ID: mdl-27001151

ABSTRACT

UNLABELLED: Tumors are dynamic organs that evolve during disease progression with genetic, epigenetic, and environmental differences among tumor cells serving as the foundation for selection and evolution in tumors. Tumor-initiating cells (TIC) that are responsible for tumorigenesis are a source of functional cellular heterogeneity, whereas chromosomal instability (CIN) is a source of karyotypic genetic diversity. However, the extent that CIN contributes to TIC genetic diversity and its relationship to TIC function remains unclear. Here, we demonstrate that glioblastoma TICs display CIN with lagging chromosomes at anaphase and extensive nonclonal chromosome copy-number variations. Elevating the basal chromosome missegregation rate in TICs decreases both proliferation and the stem-like phenotype of TICs in vitro Consequently, tumor formation is abolished in an orthotopic mouse model. These results demonstrate that TICs generate genetic heterogeneity within tumors, but that TIC function is impaired if the rate of genetic change is elevated above a tolerable threshold. SIGNIFICANCE: Genetic heterogeneity among TICs may produce advantageous karyotypes that lead to therapy resistance and relapse; however, we found that TICs have an upper tolerable limit for CIN. Thus, increasing the chromosome missegregation rate offers a new therapeutic strategy to eliminate TICs from tumors. Cancer Discov; 6(5); 532-45. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 461.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chromosomal Instability , Glioblastoma/genetics , Glioblastoma/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Biomarkers , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Chromosome Aberrations , Chromosome Segregation , DNA Fragmentation , Disease Models, Animal , Female , Genetic Heterogeneity , Genetic Predisposition to Disease , Glioblastoma/metabolism , Heterografts , Humans , In Situ Hybridization, Fluorescence , Mice , Mutation
9.
Curr Biol ; 25(13): R538-42, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26126276

ABSTRACT

The terms 'haploid' and 'diploid' that describe single (n) and double (2n) chromosome sets in cells were coined by the Polish-German botanist Eduard Strasburger and originate from the Greek terms haplóos meaning 'single' and diplóos meaning 'double'. The term 'ploidy' was subsequently derived to describe the total chromosome content of cells. Consequently, the term 'euploid' refers to a chromosome complement that is an exact multiple of the haploid number. Therefore, haploids and diploids are both cases of normal euploidy. Euploid types that have more than two sets of chromosomes are 'polyploid' such as 'triploid' (3n), 'tetraploid' (4n), 'pentaploid' (5n), and so forth. There are various natural euploid states with some organisms existing as haploids (fungi), diploids (most mammals), and polyploids (plants).


Subject(s)
Aneuploidy , Chromosome Segregation/physiology , Models, Genetic , Phenotype , Spindle Apparatus/physiology , Cell Proliferation/physiology , Gene Dosage , Humans , Kinetochores/physiology , Telomere/physiology
10.
Nat Rev Mol Cell Biol ; 16(1): 57-64, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25466864

ABSTRACT

Faithful chromosome segregation during mitosis is essential for genome integrity and is mediated by the bi-oriented attachment of replicated chromosomes to spindle microtubules through kinetochores. Errors in kinetochore-microtubule (k-MT) attachment that could cause chromosome mis-segregation are frequent and are corrected by the dynamic turnover of k-MT attachments. Thus, regulating the rate of spindle microtubule attachment and detachment to kinetochores is crucial for mitotic fidelity and is frequently disrupted in cancer cells displaying chromosomal instability. A model based on homeostatic principles involving receptors, a core control network, effectors and feedback control may explain the precise regulation of k-MT attachment stability during mitotic progression to ensure error-free mitosis.


Subject(s)
Chromosomal Instability , Chromosome Segregation , Kinetochores/metabolism , Microtubules/metabolism , Mitosis , Neoplasms/metabolism , Animals , Humans , Microtubules/genetics , Neoplasms/genetics , Neoplasms/pathology
11.
Nat Cell Biol ; 11(7): 896-902, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19543270

ABSTRACT

Centromeres are specialized chromosomal domains that direct kinetochore assembly during mitosis. CENP-A (centromere protein A), a histone H3-variant present exclusively in centromeric nucleosomes, is thought to function as an epigenetic mark that specifies centromere identity. Here we identify the essential centromere protein CENP-N as the first protein to selectively bind CENP-A nucleosomes but not H3 nucleosomes. CENP-N bound CENP-A nucleosomes in a DNA sequence-independent manner, but did not bind soluble CENP-A-H4 tetramers. Mutations in CENP-N that reduced its affinity for CENP-A nucleosomes caused defects in CENP-N localization and had dominant effects on the recruitment of CENP-H, CENP-I and CENP-K to centromeres. Depletion of CENP-N using siRNA (short interfering RNA) led to similar centromere assembly defects and resulted in reduced assembly of nascent CENP-A into centromeric chromatin. These data suggest that CENP-N interprets the information encoded within CENP-A nucleosomes and recruits other proteins to centromeric chromatin that are required for centromere function and propagation.


Subject(s)
Autoantigens/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Nucleosomes/metabolism , Cell Line , Centromere/genetics , Centromere/metabolism , Centromere Protein A , Chromosomal Proteins, Non-Histone/genetics , Electrophoretic Mobility Shift Assay , HeLa Cells , Humans , Microscopy, Fluorescence , Protein Binding , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...