Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Geochem Geophys Geosyst ; 17(8): 3254-3273, 2016 08.
Article in English | MEDLINE | ID: mdl-27917071

ABSTRACT

This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low 206Pb/204Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

2.
Sci Rep ; 6: 21737, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26899139

ABSTRACT

We present new data about the chemical and structural characteristics of bauxite residue (BR) from Greek Al industry, using a combination of microscopic, analytical, and spectroscopic techniques. SEM-EDS indicated a homogeneous dominant "Al-Fe-Ca-Ti-Si-Na-Cr matrix", appearing at the microscale. The bulk chemical analyses showed considerable levels of Th (111 µg g(-1)), along with minor U (15 µg g(-1)), which are responsible for radioactivity (355 and 133 Bq kg(-1) for (232)Th and (238)U, respectively) with a total dose rate of 295 nGy h(-1). Leaching experiments, in conjunction with SF-ICP-MS, using Mediterranean seawater from Greece, indicated significant release of V, depending on S/L ratio, and negligible release of Th at least after 12 months leaching. STEM-EDS/EELS &HR-STEM-HAADF study of the leached BR at the nanoscale revealed that the significant immobility of Th(4+) is due to its incorporation into an insoluble perovskite-type phase with major composition of Ca(0.8)Na(0.2)TiO3 and crystallites observed in nanoscale. The Th L(III)-edge EXAFS spectra demonstrated that Th(4+) ions, which are hosted in this novel nano-perovskite of BR, occupy Ca(2+) sites, rather than Ti(4+) sites. That is most likely the reason of no Th release in Mediterranean seawater.

3.
Sci Total Environ ; 476-477: 577-90, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24496031

ABSTRACT

The present study involves an integration of the hydrogeological, hydrochemical and isotopic (both stable and radiogenic) data of the groundwater samples taken from aquifers occurring in the region of northeastern Peloponnesus. Special emphasis has been given to health-related ions and isotopes in relation to the WHO and USEPA guidelines, to highlight the concentrations of compounds (e.g., As and Ba) exceeding the drinking water thresholds. Multivariate statistical analyses, i.e. two principal component analyses (PCA) and one discriminant analysis (DA), combined with conventional hydrochemical methodologies, were applied, with the aim to interpret the spatial variations in the groundwater quality and to identify the main hydrogeochemical factors and human activities responsible for the high ion concentrations and isotopic content in the groundwater analysed. The first PCA resulted in a three component model, which explained approximately 82% of the total variance of the data sets and enabled the identification of the hydrogeological processes responsible for the isotopic content i.e., δ(18)Ο, tritium and (222)Rn. The second PCA, involving the trace element presence in the water samples, revealed a four component model, which explained approximately 89% of the total variance of the data sets, giving more insight into the geochemical and anthropogenic controls on the groundwater composition (e.g., water-rock interaction, hydrothermal activity and agricultural activities). Using discriminant analysis, a four parameter (δ(18)O, (Ca+Mg)/(HCO3+SO4), EC and Cl) discriminant function concerning the (222)Rn content was derived, which favoured a classification of the samples according to the concentration of (222)Rn as (222)Rn-safe (<11 Bq·L(-1)) and (222)Rn-contaminated (>11 Bq·L(-1)). The selection of radon builds on the fact that this radiogenic isotope has been generally related to increased health risk when consumed.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Greece , Multivariate Analysis , Water Pollution, Chemical/statistics & numerical data
4.
Sci Rep ; 3: 2421, 2013.
Article in English | MEDLINE | ID: mdl-23939372

ABSTRACT

We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.


Subject(s)
Archaea/isolation & purification , Hydrothermal Vents/chemistry , Hydrothermal Vents/microbiology , Metals/analysis , Volcanic Eruptions/analysis , Greece
5.
J Trace Elem Med Biol ; 27(2): 79-84, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23117070

ABSTRACT

We have analyzed gallstones from four patients of Europe and particularly from England (including samples from a mother and a daughter) and Greece. According to the XRD, FTIR, NMR and laser micro-Raman results the studied materials correspond to typical cholesterol monohydrate (ChM). The micro-morphology of cholesterol microcrystals was investigated by means of SEM-EDS. The XRF results revealed that Ca is the dominant non-organic metal in all gallstones (up to ∼1.95wt.%) together with Fe, Cu, Pb and Ni (up to ~19ppm for each metal). Gallstones from England contain additional Mn (up to ~87ppm) and Zn (up to ∼6ppm) while the sample of the mother contains negligible Zn and Mn, compared to that of her daughter, but significant As (~4.5ppm). All cholesterol gallstones examined are well enriched in potentially toxic metals (Pb, as well as Ni in one case) and metalloids (As also in one case) as compared to the global average. The position of Zn, which is a characteristic biometal, in the structure of cholesterol, was investigated by molecular simulation using the Accelrys Materials Studio(®) software. On the basis of IRMS results, all gallstones examined exhibit a very light δ(13)C signature (average δ(13)C ~-24‰ PDB). Gamma-ray spectrometry measurements indicate the presence of (214)Pb and (214)Bi natural radionuclides due to the (238)U series as well as an additional amount of (40)K.


Subject(s)
Cholesterol/chemistry , Gallstones/chemistry , Minerals/chemistry , England , Female , Gallstones/ultrastructure , Greece , Humans , Isotopes , Magnetic Resonance Spectroscopy , Male , Spectrometry, X-Ray Emission
6.
J Hazard Mater ; 187(1-3): 421-32, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21296496

ABSTRACT

Bottom and fly ash samples (BASH and FASH) from the APOTEFROTIRAS S.A. medical waste incinerator (Athens, Greece) were investigated. Powder-XRD data and geochemical diagrams showed BASH to be an amorphous material, analogous to basaltic glass, and FASH consisting of crystalline compounds (mainly CaClOH). Bulk analyses by ICP-MS and point analyses by SEM-EDS indicated a high content of heavy metals, such as Fe, Cu and Cr, in both samples. However, BASH was highly enriched in Ni while FASH was additionally enriched in Zn and Pb. Gamma-ray measurements showed that the radioactivity of both ash samples, due to natural and artificial radionuclides ((137)Cs, (57)Co), was within the permissible levels recommended by IAEA. According to EN-type leaching tests, BASH was practically inert with regard to the mobility of the hazardous elements in aqueous media. FASH, however, showed a relatively high EN (and TCLP) leachability with regard to Pb and Zn. Finally, the stabilisation method, suggested for the treatment of FASH, included compression of the powder into briquettes using an appropriate machine and embedding the briquettes into pozzolanic cement blocks. After this treatment, TCLP and EN-type tests showed minimal release of Pb and Zn, thereby demonstrating a reliable management of ash waste.


Subject(s)
Incineration , Maintenance and Engineering, Hospital , Greece , Mass Spectrometry , Microscopy, Electron, Scanning , X-Ray Diffraction
7.
Environ Sci Technol ; 37(15): 3351-60, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12966981

ABSTRACT

Pure calcium carbonate (calcite and aragonite) solid materials of different particle size (100-200 microm fragments and millimeter-sized single crystals) were interacted with Pb in aqueous solutions at room temperature under atmospheric PCO2. In the case of the micrometer-sized samples, the macroscopic investigation using a batch-type treatment procedure (solutions between 10 and 1000 mg/L Pb) and ICP-AES, SEM-EDS, and powder-XRD showed that the metal is readily removed from the aqueous media by both materials and indicated the sorption processes (mainly surface precipitation leading to overgrowth of cerussite and hydrocerussite crystals) taking place in parallel with surface dissolution processes. The various processes occurring at the calcium carbonate solid-water interface were clearly distinguished and defined in the case of the millimeter-sized samples interacted with 1000 mg/L Pb using a combination of wet-chemical, in-situ (AFM) and ex-situ (AFM, SEM) microscopic, and surface spectroscopic (XPS, 12C-RBS) techniques. The in-situ AFM data revealed the dissolution processes on the surface of the calcium carbonates and the simultaneous heterogeneous nucleation of lead carbonate phases and confirmed the secondary dissolution of lead carbonate crystals grown epitaxially from the initial nuclei. The XPS spectra confirmed that adsorption of Pb occurs simultaneously to dissolution at short interaction times (less than approximately 10 min, prior to precipitation-nucleation/crystal growth) in the case of both CaCO3 polymorphs and that the calcite surface with adsorbed Pb may have an aragonite-type character. The 12C-RBS spectra indicated that absorption (incorporation of Pb2+ ions) also takes place in parallel at the surface layers of the calcium carbonates, resulting in formation of solid solutions.


Subject(s)
Antacids/chemistry , Calcium Carbonate/chemistry , Lead/chemistry , Water Pollutants/analysis , Absorption , Microscopy, Electron, Scanning , Particle Size , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...