Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Environ Microbiol ; 26(4): e16625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38653479

ABSTRACT

Diatoms can survive long periods in dark, anoxic sediments by forming resting spores or resting cells. These have been considered dormant until recently when resting cells of Skeletonema marinoi were shown to assimilate nitrate and ammonium from the ambient environment in dark, anoxic conditions. Here, we show that resting cells of S. marinoi can also perform dissimilatory nitrate reduction to ammonium (DNRA), in dark, anoxic conditions. Transmission electron microscope analyses showed that chloroplasts were compacted, and few large mitochondria had visible cristae within resting cells. Using secondary ion mass spectrometry and isotope ratio mass spectrometry combined with stable isotopic tracers, we measured assimilatory and dissimilatory processes carried out by resting cells of S. marinoi under dark, anoxic conditions. Nitrate was both respired by DNRA and assimilated into biomass by resting cells. Cells assimilated nitrogen from urea and carbon from acetate, both of which are sources of dissolved organic matter produced in sediments. Carbon and nitrogen assimilation rates corresponded to turnover rates of cellular carbon and nitrogen content ranging between 469 and 10,000 years. Hence, diatom resting cells can sustain their cells in dark, anoxic sediments by slowly assimilating and respiring substrates from the ambient environment.


Subject(s)
Ammonium Compounds , Diatoms , Nitrates , Oxidation-Reduction , Nitrates/metabolism , Ammonium Compounds/metabolism , Diatoms/metabolism , Anaerobiosis , Darkness , Organic Chemicals/metabolism , Spectrometry, Mass, Secondary Ion , Geologic Sediments/microbiology , Carbon/metabolism , Nitrogen/metabolism
2.
Mol Ecol ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697448

ABSTRACT

Phytoplankton have short generation times, flexible reproduction strategies, large population sizes and high standing genetic diversity, traits that should facilitate rapid evolution under directional selection. We quantified local adaptation of copper tolerance in a population of the diatom Skeletonema marinoi from a mining-exposed inlet in the Baltic Sea and in a non-exposed population 100 km away. We hypothesized that mining pollution has driven evolution of elevated copper tolerance in the impacted population of S. marinoi. Assays of 58 strains originating from sediment resting stages revealed no difference in the average tolerance to copper between the two populations. However, variation within populations was greater at the mining site, with three strains displaying hyper-tolerant phenotypes. In an artificial evolution experiment, we used a novel intraspecific metabarcoding locus to track selection and quantify fitness of all 58 strains during co-cultivation in one control and one toxic copper treatment. As expected, the hyper-tolerant strains enabled rapid evolution of copper tolerance in the mining-exposed population through selection on available strain diversity. Within 42 days, in each experimental replicate a single strain dominated (30%-99% abundance) but different strains dominated the different treatments. The reference population developed tolerance beyond expectations primarily due to slowly developing plastic response in one strain, suggesting that different modes of copper tolerance are present in the two populations. Our findings provide novel empirical evidence that standing genetic diversity of phytoplankton resting stage allows populations to evolve rapidly (20-50 generations) and flexibly on timescales relevant for seasonal bloom progressions.

3.
Evol Appl ; 16(2): 311-320, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36793694

ABSTRACT

Marine microorganisms have the potential to disperse widely with few obvious barriers to gene flow. However, among microalgae, several studies have demonstrated that species can be highly genetically structured with limited gene flow among populations, despite hydrographic connectivity. Ecological differentiation and local adaptation have been suggested as drivers of such population structure. Here we tested whether multiple strains from two genetically distinct Baltic Sea populations of the diatom Skeletonema marinoi showed evidence of local adaptation to their local environments: the estuarine Bothnian Sea and the marine Kattegat Sea. We performed reciprocal transplants of multiple strains between culture media based on water from the respective environments, and we also allowed competition between strains of estuarine and marine origin in both salinities. When grown alone, both marine and estuarine strains performed best in the high-salinity environment, and estuarine strains always grew faster than marine strains. This result suggests local adaptation through countergradient selection, that is, genetic effects counteract environmental effects. However, the higher growth rate of the estuarine strains appears to have a cost in the marine environment and when strains were allowed to compete, marine strains performed better than estuarine strains in the marine environment. Thus, other traits are likely to also affect fitness. We provide evidence that tolerance to pH could be involved and that estuarine strains that are adapted to a more fluctuating pH continue growing at higher pH than marine strains.

4.
ISME J ; 16(7): 1776-1787, 2022 07.
Article in English | MEDLINE | ID: mdl-35383290

ABSTRACT

The salinity gradient separating marine and freshwater environments represents a major ecological divide for microbiota, yet the mechanisms by which marine microbes have adapted to and ultimately diversified in freshwater environments are poorly understood. Here, we take advantage of a natural evolutionary experiment: the colonization of the brackish Baltic Sea by the ancestrally marine diatom Skeletonema marinoi. To understand how diatoms respond to low salinity, we characterized transcriptomic responses of acclimated S. marinoi grown in a common garden. Our experiment included eight strains from source populations spanning the Baltic Sea salinity cline. Gene expression analysis revealed that low salinities induced changes in the cellular metabolism of S. marinoi, including upregulation of photosynthesis and storage compound biosynthesis, increased nutrient demand, and a complex response to oxidative stress. However, the strain effect overshadowed the salinity effect, as strains differed significantly in their response, both regarding the strength and the strategy (direction of gene expression) of their response. The high degree of intraspecific variation in gene expression observed here highlights an important but often overlooked source of biological variation associated with how diatoms respond to environmental change.


Subject(s)
Diatoms , Acclimatization , Adaptation, Physiological/genetics , Diatoms/genetics , Salinity , Seawater
5.
ISME J ; 16(2): 511-520, 2022 02.
Article in English | MEDLINE | ID: mdl-34446855

ABSTRACT

Despite widespread metal pollution of coastal ecosystems, little is known of its effect on marine phytoplankton. We designed a co-cultivation experiment to test if toxic dose-response relationships can be used to predict the competitive outcome of two species under metal stress. Specifically, we took into account intraspecific strain variation and selection. We used 72 h dose-response relationships to model how silver (Ag), cadmium (Cd), and copper (Cu) affect both intraspecific strain selection and competition between taxa in two marine diatoms (Skeletonema marinoi and Thalassiosira baltica). The models were validated against 10-day co-culture experiments, using four strains per species. In the control treatment, we could predict the outcome using strain-specific growth rates, suggesting low levels of competitive interactions between the species. Our models correctly predicted which species would gain a competitive advantage under toxic stress. However, the absolute inhibition levels were confounded by the development of chronic toxic stress, resulting in a higher long-term inhibition by Cd and Cu. We failed to detect species differences in average Cu tolerance, but the model accounting for strain selection accurately predicted a competitive advantage for T. baltica. Our findings demonstrate the importance of incorporating multiple strains when determining traits and when performing microbial competition experiments.


Subject(s)
Diatoms , Copper/toxicity , Diatoms/genetics , Ecosystem , Phytoplankton/genetics
6.
Microbiologyopen ; 10(2): e1179, 2021 03.
Article in English | MEDLINE | ID: mdl-33970543

ABSTRACT

Little is known about the functions of the crustacean gut microbiome, but environmental parameters and habitat are known to affect the composition of the intestinal microbiome, which may in turn affect the physiological status of the host. The mud crab Scylla serrata is an economically important species, and is wild-caught, and farmed across the Indo-Pacific region. In this study, we compared the composition of the gut microbiome (in terms of gut microbial species richness and abundance) of S. serrata collected from wild sites, and farms, from the east and west coast of India, and also tested the effects of the environment on the composition. The water temperature had a statistically significant effect on gut microbiome composition, with microbial biodiversity decreasing with increasing water temperature. This could have negative effects on both wild and farmed mud crabs under future climate change conditions, although further research into the effects of temperature on gut microbiomes is required. By comparison, salinity, crab mass and carapace width, geographical location as well as whether they were farmed or wild-caught crabs did not have a significant impact on gut microbiome composition. The results indicate that farming does not significantly alter the composition of the gut microbiome when compared to wild-caught crabs.


Subject(s)
Bacteria/classification , Brachyura/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/genetics , Biodiversity , DNA, Bacterial , India , RNA, Ribosomal, 16S , Salinity , Sequence Analysis, DNA/methods , Temperature
7.
Physiol Plant ; 173(2): 543-554, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33826748

ABSTRACT

At Nordic latitudes, year-round outdoor cultivation of microalgae is debatable due to seasonal variations in productivity. Shall the same species/strains be used throughout the year, or shall seasonal-adapted ones be used? To elucidate this, a laboratory study was performed where two out of 167 marine microalgal strains were selected for intended cultivation at the west coast of Sweden. The two local strains belong to Nannochloropsis granulata (Ng) and Skeletonema marinoi (Sm142). They were cultivated in photobioreactors and compared in conditions simulating variations in light and temperature of a year divided into three growth seasons (spring, summer and winter). The strains grew similarly well in summer (and also in spring), but Ng produced more biomass (0.225 vs. 0.066 g DW L-1 day-1 ) which was more energy rich (25.0 vs. 16.6 MJ kg-1 DW). In winter, Sm142 grew faster and produced more biomass (0.017 vs. 0.007 g DW L-1 day-1 ), having similar energy to the other seasons. The higher energy of the Ng biomass is attributed to a higher lipid content (40 vs. 16% in summer). The biomass of both strains was richest in proteins (65%) in spring. In all seasons, Sm142 was more effective in removing phosphorus from the cultivation medium (6.58 vs. 4.14 mg L-1 day-1 in summer), whereas Ng was more effective in removing nitrogen only in summer (55.0 vs. 30.8 mg L-1 day-1 ). Our results suggest that, depending on the purpose, either the same or different local species can be cultivated, and are relevant when designing outdoor studies.


Subject(s)
Microalgae , Biomass , Laboratories , Seasons , Sweden , Temperature
8.
Aquat Toxicol ; 226: 105551, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32707232

ABSTRACT

Strains of microalgae vary in traits between species and populations due to adaptation or stochastic processes. Traits of individual strains may also vary depending on the acclimatization state and external forces, such as abiotic stress. In this study we tested how metal tolerance differs among marine diatoms at three organizational levels: species, populations, and strains. At the species level we compared two pelagic Baltic Sea diatoms (Skeletonema marinoi and Thalassiosira baltica). We found that the between-species differences in tolerance (EC50) to the biologically active metals (Cu, Co, Ni, and Zn) was similar to that within-species. In contrast, the two species differed significantly in tolerance towards the non-essential metals, Ag (three-fold higher in T. baltica), Pb and Cd (two and three-fold higher in S. marinoi). At the population level, we found evidence that increased tolerance against Cu and Co (17 and 41 % higher EC50 on average, respectively) had evolved in a S. marinoi population subjected to historical mining activity. On a strain level we demonstrate how the growth phase of cultures (i.e., cellular densities above exponential growth) modulated dose-response relationships to Ag, Cd, Co, Cu, and Zn. Specifically, the EC50's were reduced by 10-60 % in non-exponentially growing S. marinoi (strain RO5AC), depending on metal. For the essential metals these differences were often larger than the average differences between the two species and populations. Consequently, without careful experimental design, interactions between nutrient limitation and metal stress may interfere with detection of small, but evolutionary and ecologically important, differences in tolerance between microalgae. To avoid such artifacts, we outline a semi-continuous cultivation approach that maintains, and empirically tests, that exponential growth is achieved. We argue that such an approach is essential to enable comparison of population or strain differences in tolerance using dose-response tests on cultures of microalgae.


Subject(s)
Acclimatization/drug effects , Diatoms/growth & development , Metals, Heavy/toxicity , Microalgae/growth & development , Water Pollutants, Chemical/toxicity , Diatoms/drug effects , Microalgae/drug effects , Mining , Population Dynamics , Species Specificity
9.
Commun Biol ; 3(1): 169, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32265485

ABSTRACT

DNA can be preserved in marine and freshwater sediments both in bulk sediment and in intact, viable resting stages. Here, we assess the potential for combined use of ancient, environmental, DNA and timeseries of resurrected long-term dormant organisms, to reconstruct trophic interactions and evolutionary adaptation to changing environments. These new methods, coupled with independent evidence of biotic and abiotic forcing factors, can provide a holistic view of past ecosystems beyond that offered by standard palaeoecology, help us assess implications of ecological and molecular change for contemporary ecosystem functioning and services, and improve our ability to predict adaptation to environmental stress.


Subject(s)
DNA/isolation & purification , Evolution, Molecular , Geologic Sediments , Acclimatization , Animals , DNA/genetics , DNA, Ancient/isolation & purification , DNA, Archaeal/isolation & purification , DNA, Bacterial/isolation & purification , DNA, Fungal/isolation & purification , DNA, Viral/isolation & purification , Ecosystem , Environmental Monitoring , Geologic Sediments/microbiology , Geologic Sediments/virology , Phylogeny , Phytoplankton/genetics , Species Specificity , Time Factors , Zooplankton/genetics
10.
J Phycol ; 56(3): 699-708, 2020 06.
Article in English | MEDLINE | ID: mdl-32012281

ABSTRACT

The planktonic marine diatom Skeletonema marinoi forms resting stages, which can survive for decades buried in aphotic, anoxic sediments and resume growth when re-exposed to light, oxygen, and nutrients. The mechanisms by which they maintain cell viability during dormancy are poorly known. Here, we investigated cell-specific nitrogen (N) and carbon (C) assimilation and survival rate in resting stages of three S. marinoi strains. Resting stages were incubated with stable isotopes of dissolved inorganic N (DIN), in the form of 15 N-ammonium (NH4+ ) or -nitrate (NO3- ) and dissolved inorganic C (DIC) as 13 C-bicarbonate (HCO3- ) under dark and anoxic conditions for 2 months. Particulate C and N concentration remained close to the Redfield ratio (6.6) during the experiment, indicating viable diatoms. However, survival varied between <0.1% and 47.6% among the three different S. marinoi strains, and overall survival was higher when NO3- was available. One strain did not survive in the NH4+ treatment. Using secondary ion mass spectrometry (SIMS), we quantified assimilation of labeled DIC and DIN from the ambient environment within the resting stages. Dark fixation of DIC was insignificant across all strains. Significant assimilation of 15 N-NO3- and 15 N-NH4+ occurred in all S. marinoi strains at rates that would double the nitrogenous biomass over 77-380 years depending on strain and treatment. Hence, resting stages of S. marinoi assimilate N from the ambient environment at slow rates during darkness and anoxia. This activity may explain their well-documented long survival and swift resumption of vegetative growth after dormancy in dark and anoxic sediments.


Subject(s)
Diatoms , Carbon , Humans , Hypoxia , Nitrates , Nitrogen
11.
Toxins (Basel) ; 11(12)2019 12 01.
Article in English | MEDLINE | ID: mdl-31805656

ABSTRACT

The fresh-water cyanobacterium Microcystis is known to form blooms world-wide, and is often responsible for the production of microcystins found in lake water. Microcystins are non-ribosomal peptides with toxic effects, e.g. on vertebrates, but their function remains largely unresolved. Moreover, not all strains produce microcystins, and many different microcystin variants have been described. Here we explored the diversity of microcystin variants within Microcystis botrys, a common bloom-former in Sweden. We isolated a total of 130 strains through the duration of a bloom in eutrophic Lake Vomb, and analyzed their microcystin profiles with tandem mass spectrometry (LC-MS/MS). We found that microcystin producing (28.5%) and non-producing (71.5%) M. botrys strains, co-existed throughout the bloom. However, microcystin producing strains were more prevalent towards the end of the sampling period. Overall, 26 unique M. botrys chemotypes were identified, and while some chemotypes re-occurred, others were found only once. The M. botrys chemotypes showed considerable variation both in terms of number of microcystin variants, as well as in what combinations the variants occurred. To our knowledge, this is the first report on microcystin chemotype variation and dynamics in M. botrys. In addition, our study verifies the co-existence of microcystin and non-microcystin producing strains, and we propose that environmental conditions may be implicated in determining their composition.


Subject(s)
Microcystins/analysis , Microcystis/isolation & purification , Environmental Monitoring , Eutrophication , Lakes/chemistry , Lakes/microbiology , Seasons , Sweden
12.
Sci Rep ; 9(1): 15143, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31641221

ABSTRACT

Diatoms are the dominant phytoplankton in temperate oceans and coastal regions and yet little is known about the genetic basis underpinning their global success. Here, we address this challenge by developing the first phenomic approach for a diatom, screening a collection of randomly mutagenized but identifiably tagged transformants. Based upon their tolerance to temperature extremes, several compromised mutants were identified revealing genes either stress related or encoding hypothetical proteins of unknown function. We reveal one of these hypothetical proteins is a novel putative chloroplast fatty acid transporter whose loss affects several fatty acids including the two omega-3, long-chain polyunsaturated fatty acids - eicosapentaenoic and docosahexaenoic acid, both of which have medical importance as dietary supplements and industrial significance in aquaculture and biofuels. This mutant phenotype not only provides new insights into the fatty acid biosynthetic pathways in diatoms but also highlights the future value of phenomics for revealing specific gene functions in these ecologically important phytoplankton.


Subject(s)
Acclimatization , Chloroplasts/metabolism , Diatoms/metabolism , Ecosystem , Fatty Acids/metabolism , Membrane Transport Proteins/metabolism , Phenomics , Temperature , Diatoms/genetics , Genome , Mutagenesis, Insertional/genetics , Mutation/genetics , Transformation, Genetic
13.
J Genomics ; 7: 60-63, 2019.
Article in English | MEDLINE | ID: mdl-31588249

ABSTRACT

Attempts to obtain axenic cultures of the marine diatom Skeletonema marinoi often result in poor growth, indicating the importance of the microbiome to the growth of its host. In order to identify the precise roles played by these associated bacteria, individual strains were isolated, cultured and sequenced. We report the genome of one such strain - SMR5, isolated from a culture of S. marinoi strain R05AC sampled from top layer sediments of the Swedish west coast. Its genome of 4,630,160 bp consists of a circular chromosome and one circular plasmid, and 4,263 CDSs were inferred in the annotation. Comparison of 16S rRNA sequences and other markers, along with phylotaxonomic analysis, leads us to place strain SMR5 in the taxon Marinobacter salarius. Pathway analysis and previous experimental work suggest that this strain may produce a growth factor, as well as improve iron availability for its host via siderophores.

14.
Microbiol Resour Announc ; 8(29)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320411

ABSTRACT

The bacterial strain SMR4y belongs to the diverse microbiome of the marine diatom Skeletonema marinoi strain R05AC. After assembly of its genome, presented here, and subsequent analyses, we placed it in the genus Sphingorhabdus This strain has a 3,479,724-bp circular chromosome (with 3,340 coding sequences) and no known plasmids.

15.
Genes (Basel) ; 10(7)2019 06 28.
Article in English | MEDLINE | ID: mdl-31261777

ABSTRACT

Sexual reproduction plays a fundamental role in diatom life cycles. It contributes to increasing genetic diversity through meiotic recombination and also represents the phase where large-sized cells are produced to counteract the cell size reduction process that characterizes these microalgae. With the aim to identify genes linked to the sexual phase of the centric planktonic diatom Skeletonemamarinoi, we carried out an RNA-seq experiment comparing the expression level of transcripts in sexualized cells with that of large cells not competent for sex. A set of genes involved in meiosis were found upregulated. Despite the fact that flagellate gametes were observed in the sample, we did not detect the expression of genes involved in the synthesis of flagella that were upregulated during sexual reproduction in another centric diatom. A comparison with the set of genes changing during the first phases of sexual reproduction of the pennate diatom Pseudo-nitzschiamultistriata revealed the existence of commonalities, including the strong upregulation of genes with an unknown function that we named Sex Induced Genes (SIG). Our results further broadened the panel of genes that can be used as a marker for sexual reproduction of diatoms, crucial for the interpretation of metatranscriptomic datasets.


Subject(s)
Diatoms/genetics , Flagella/genetics , Gene Expression , Meiosis/genetics , RNA-Seq , Reproduction/genetics , Reproduction/physiology , Sexual Behavior/physiology , Transcriptome/genetics
16.
J Genomics ; 7: 46-49, 2019.
Article in English | MEDLINE | ID: mdl-31171940

ABSTRACT

Initial efforts to sequence the genome of the marine diatom Skeletonema marinoi were hampered by the presence of genetic material from bacteria, and there was sufficient material from some of these bacteria to enable the assembly of full chromosomes. Here, we report the genome of strain SMS9, one such bacterial species identified in a non-axenic culture of S. marinoi strain ST54. Its 5,482,391 bp circular chromosome contains 4,641 CDSs, and has a G+C content of 35.6%. Based on 16S rRNA comparison, phylotaxonomic analysis, and the genome similarity metrics dDDH and OrthoANI, we place this strain in the genus Kordia, and to the best of our knowledge, this is the first Kordia species to be initially described from European waters. As attempts to culture this strain have failed, however, the specifics of its relationship with S. marinoi are still uncertain.

17.
Sci Rep ; 9(1): 5391, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940823

ABSTRACT

Diatoms are ubiquitous primary producers in marine ecosystems and freshwater habitats. Due to their complex evolutionary history, much remains unknown about the specific gene functions in diatoms that underlie their broad ecological success. In this study, we have genetically transformed the centric diatom Skeletonema marinoi, a dominant phytoplankton species in temperate coastal regions. Transformation of S. marinoi is the first for a true chain-forming diatom, with the random genomic integration via nonhomologous recombination of a linear DNA construct expressing the resistance gene to the antibiotic zeocin. A set of molecular tools were developed for reliably identifying the genomic insertion site within each transformant, many of which disrupt recognizable genes and constitute null or knock-down mutations. We now propose S. marinoi as a new genetic model for marine diatoms, representing true chain-forming species that play a central role in global photosynthetic carbon sequestration and the biogeochemical cycling of silicates and various nutrients, as well as having potential biotechnological applications.


Subject(s)
Diatoms , Models, Genetic , Phytoplankton , Diatoms/genetics , Diatoms/metabolism , Phytoplankton/genetics , Phytoplankton/metabolism
18.
Front Physiol ; 10: 373, 2019.
Article in English | MEDLINE | ID: mdl-31019470

ABSTRACT

Research on the effects of climate change in the marine environment continues to accelerate, yet we know little about the effects of multiple climate drivers in more complex, ecologically relevant settings - especially in sub-tropical and tropical systems. In marine ecosystems, climate change (warming and freshening from land run-off) will increase water column stratification which is favorable for toxin producing dinoflagellates. This can increase the prevalence of toxic microalgal species, leading to bioaccumulation of toxins by filter feeders, such as bivalves, with resultant negative impacts on physiological performance. In this study we manipulated multiple climate drivers (warming, freshening, and acidification), and the availability of toxic microalgae, to determine their impact on the physiological health, and toxin load of the tropical filter-feeding clam, Meretrix meretrix. Using a structural equation modeling (SEM) approach, we found that exposure to projected marine climates resulted in direct negative effects on metabolic and immunological function and, that these effects were often more pronounced in clams exposed to multiple, rather than single climate drivers. Furthermore, our study showed that these physiological responses were modified by indirect effects mediated through the food chain. Specifically, we found that when bivalves were fed with a toxin-producing dinoflagellate (Alexandrium minutum) the physiological responses, and toxin load changed differently and in a non-predictable way compared to clams exposed to projected marine climates only. Specifically, oxygen consumption data revealed that these clams did not respond physiologically to climate warming or the combined effects of warming, freshening and acidification. Our results highlight the importance of quantifying both direct and, indirect food chain effects of climate drivers on a key tropical food species, and have important implications for shellfish production and food safety in tropical regions.

19.
Physiol Plant ; 166(1): 438-450, 2019 May.
Article in English | MEDLINE | ID: mdl-30809828

ABSTRACT

Climate change, energy use and food security are the main challenges that our society is facing nowadays. Biofuels and feedstock from microalgae can be part of the solution if high and continuous production is to be ensured. This could be attained in year-round, low cost, outdoor cultivation systems using strains that are not only champion producers of desired compounds but also have robust growth in a dynamic climate. Using microalgae strains adapted to the local conditions may be advantageous particularly in Nordic countries. Here, we review the current status of laboratory and outdoor-scale cultivation in Nordic conditions of local strains for biofuel, high-value compounds and water remediation. Strains suitable for biotechnological purposes were identified from the large and diverse pool represented by saline (NE Atlantic Ocean), brackish (Baltic Sea) and fresh water (lakes and rivers) sources. Energy-efficient annual rotation for cultivation of strains well adapted to Nordic climate has the potential to provide high biomass yields for biotechnological purposes.


Subject(s)
Biotechnology/methods , Microalgae/metabolism , Biofuels , Biomass , Scandinavian and Nordic Countries
20.
Article in English | MEDLINE | ID: mdl-30643889

ABSTRACT

Arenibacter algicola strain SMS7 was isolated from a culture of the marine diatom Skeletonema marinoi strain ST54, sampled from top-layer sediments in Kosterfjord, Sweden. Here, we present its 5,857,781-bp genome, consisting of a circular chromosome and one circular plasmid, in all containing 4,932 coding sequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...