Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(8): 12326-12336, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472870

ABSTRACT

The field of ultraviolet (UV)-laser applications is currently experiencing rapid growth in the semiconductor processing, laser micromachining and biomedical markets. Key enablers for these technologies are optical coatings used to manipulate and guide laser beams in a targeted manner. As laser power, laser fluence and pulse frequencies increase, the demands on the physical properties of the coating materials become more stringent. Ion beam sputtering is a technique that allows producing optical coatings with the low losses required in these applications. In this study, we investigate the influence of ion beam sputtering (IBS) parameters on the optical properties of HfO2 and SiO2 single layers as well as the impact of annealing duration at 475 °C for anti-reflective (AR) and highly reflective (HR) optical coatings at 355 nm. For HfO2 sputtered from a metal target the O2 flow during the coating process is a key parameter to reduce absorption. SiO2 single layers exhibit improved transmission in the UV-range as the ion beam energy for the sputtering process is reduced. Furthermore, a complex behavior for film stress, absorption, surface roughness and coating structure was unraveled as a function of annealing duration for AR- and HR-coatings at 355 nm. The reflectance of the HR-mirror after optimized annealing exceeded 99.94% at 355 nm and a high laser induced damage threshold (LIDT) of 6.9 J/cm2 was measured after 2 hours of annealing. For the AR-coating a LIDT-value of 15.7 J/cm2 was observed after 12 hours of annealing.

2.
Sci Rep ; 7(1): 17798, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259238

ABSTRACT

A model has been developed to account for and prevent the anomalies encountered in topographic images of transition metal dichalcogenide monolayers using dynamic atomic force microscopy (dAFM). The height of WS2 monolayers measured using dAFM appeared to be increased or decreased, resulting from the interactions between the tip and the surface. The hydrophilic SiO2 substrate appeared higher than the weakly hydrophilic WS2 when the tip amplitude was low or at a high set point (high force). Large amplitudes and low set points corrected the step height inversion, but did not recover the true step height. Removing water from the sample resulted in an order of magnitude reduced variation in step height, but the WS2 appeared inverted except at low amplitudes and high set points. Our model explains the varying step heights in dAFM of TMDs as a result of varying tip-sample interactions between the sample and substrate, in the presence or absence of capillaries. To eliminate contrast inversion, high amplitudes can be used to reduce the effect of capillary forces. However, when capillaries are not present, low amplitudes and high set points produce images with proper contrast due to tool operation in the repulsive regime on both materials.

3.
Adv Mater ; 29(18)2017 May.
Article in English | MEDLINE | ID: mdl-28234414

ABSTRACT

Transition metal dichalcogenides (TMDs) have emerged as promising materials to complement graphene for advanced optoelectronics. However, irreversible degradation of chemical vapor deposition-grown monolayer TMDs via oxidation under ambient conditions limits applications of TMD-based devices. Here, the growth of oxidation-resistant tungsten disulfide (WS2 ) monolayers on graphene is demonstrated, and the mechanism of oxidation of WS2 on SiO2 , graphene/SiO2 , and on graphene suspended in air is elucidated. While WS2 on a SiO2 substrate begins oxidation within weeks, epitaxially grown WS2 on suspended graphene does not show any sign of oxidation, attributed to the screening effect of surface electric field caused by the substrate. The control of a local oxidation of WS2 on a SiO2 substrate by a local electric field created using an atomic force microscope tip is also demonstrated.

4.
Sci Rep ; 5: 13205, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26279085

ABSTRACT

The optical and electronic properties of tungsten disulfide monolayers (WS2) have been extensively studied in the last few years, yet growth techniques for WS2 remain behind other transition metal dichalcogenides (TMDCs) such as MoS2. Here we demonstrate chemical vapor deposition (CVD) growth of continuous monolayer WS2 films on mm(2) scales and elucidate effects related to hydrogen (H2) gas concentration during growth. WS2 crystals were grown by reduction and sulfurization of WO3 using H2 gas and sulfur evaporated from solid sulfur powder. Several different growth formations (in-plane shapes) were observed depending on the concentration of H2. Characterization using atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed etching of the SiO2 substrate at low concentrations of H2 and in the presence of an Ar carrier gas. We attribute this to insufficient reduction of WO3 during growth. High H2 concentrations resulted in etching of the grown WS2 crystals after growth. The two dimensional X-ray diffraction (2D XRD) pattern demonstrates that the monolayer WS2 was grown with the (004) plane normal to the substrate, showing that the WS2 conforms to the growth substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...