Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 22(1): 11, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407096

ABSTRACT

BACKGROUND: The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS: We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS: The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.


Subject(s)
Ehrlichia chaffeensis , Ehrlichiosis , Ixodes , Animals , Dogs , Ehrlichia chaffeensis/genetics , Ehrlichiosis/veterinary , Genome, Bacterial , Japan , Mice
2.
Microb Biotechnol ; 10(4): 933-957, 2017 07.
Article in English | MEDLINE | ID: mdl-28585301

ABSTRACT

Neorickettsia helminthoeca, a type species of the genus Neorickettsia, is an endosymbiont of digenetic trematodes of veterinary importance. Upon ingestion of salmonid fish parasitized with infected trematodes, canids develop salmon poisoning disease (SPD), an acute febrile illness that is particularly severe and often fatal in dogs without adequate treatment. We determined and analysed the complete genome sequence of N. helminthoeca: a single small circular chromosome of 884 232 bp encoding 774 potential proteins. N. helminthoeca is unable to synthesize lipopolysaccharides and most amino acids, but is capable of synthesizing vitamins, cofactors, nucleotides and bacterioferritin. N. helminthoeca is, however, distinct from majority of the family Anaplasmataceae to which it belongs, as it encodes nearly all enzymes required for peptidoglycan biosynthesis, suggesting its structural hardiness and inflammatory potential. Using sera from dogs that were experimentally infected by feeding with parasitized fish or naturally infected in southern California, Western blot analysis revealed that among five predicted N. helminthoeca outer membrane proteins, P51 and strain-variable surface antigen were uniformly recognized. Our finding will help understanding pathogenesis, prevalence of N. helminthoeca infection among trematodes, canids and potentially other animals in nature to develop effective SPD diagnostic and preventive measures. Recent progresses in large-scale genome sequencing have been uncovering broad distribution of Neorickettsia spp., the comparative genomics will facilitate understanding of biology and the natural history of these elusive environmental bacteria.


Subject(s)
Anaplasmataceae Infections/veterinary , Antigens, Bacterial/genetics , Antigens, Surface/genetics , Dog Diseases/microbiology , Genome, Bacterial , Neorickettsia/genetics , Whole Genome Sequencing , Anaplasmataceae Infections/microbiology , Animals , Antibodies, Bacterial/blood , Blotting, Western , Dogs , Metabolic Networks and Pathways/genetics , Neorickettsia/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...