Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Chem Biol Interact ; 382: 110630, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37442289

ABSTRACT

ß2-adrenoceptors agonists and phosphodiesterase (PDE) inhibitors are effective bronchodilators, due to their ability to increase intracellular cyclic AMP (cAMP) levels and induce airway smooth muscle (ASM) relaxation. We have shown that increment of intracellular cAMP induced by ß2-adrenoceptors agonist fenoterol is followed by efflux of cAMP, which is converted by ecto-PDE and ecto-5'-nucleotidases (ecto-5'NT) to adenosine, leading to ASM contraction. Here we evaluate whether other classical bronchodilators used to treat asthma and chronic obstructive pulmonary disease (COPD) could induce cAMP efflux and, as consequence, influence the ASM contractility. Our results showed that ß2-adrenoceptor agonists formoterol and PDE inhibitors IBMX, aminophylline and roflumilast induced cAMP efflux and a concentration-dependent relaxation of rat trachea precontracted with carbachol. Pretreatment of tracheas with MK-571 (MRP transporter inhibitor), AMP-CP (ecto-5'NT inhibitor) or CGS-15943 (nonselective adenosine receptor antagonist) potentiated the relaxation induced by ß2-adrenoceptor agonists but did not change the relaxation induced by PDE inhibitors. These data showed that all bronchodilators tested were able to induce cAMP efflux. However, only ß2-adrenoceptor-induced relaxation of tracheal smooth muscle was affected by cAMP efflux and extracellular cAMP-adenosine pathway.


Subject(s)
Adenosine , Cyclic AMP , Rats , Animals , Cyclic AMP/metabolism , Adenosine/pharmacology , Formoterol Fumarate/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Bronchodilator Agents/pharmacology , Muscle Relaxation , Adrenergic beta-Agonists , Trachea , Receptors, Adrenergic
2.
Chem Biol Interact ; 379: 110513, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37116854

ABSTRACT

We investigated the effect of inhibition of 5-lipoxigenase (LOX) and 12-LOX pathways on the regeneration of skeletal muscle fibers after injury induced by a myotoxin (MTX) phospholipase A2 from snake venom in an in vivo experimental model. Gastrocnemius muscles of mice injected with MTX presented an increase in 5-LOX protein expression, while 12-LOX was found to be a constitutive protein of skeletal muscle. Animals that received oral treatments with 5-LOX inhibitor MK886 or 12-LOX inhibitor baicalein 30 min and 48 h after MTX-induced muscle injury showed a reduction in the inflammatory process characterized by a significant decrease of cell influx and injured fibers in the degenerative phase (6 and 24 h after injury). In the beginning of the regeneration process (3 days), mice that received MK886 showed fewer new basophilic fibers, suggesting fewer proliferative events and myogenic cell fusion. Furthermore, in the progression of tissue regeneration (14-21 days), the mice treated with 5-LOX inhibitor presented a lower quantity of central nucleus fibers and small-caliber fibers, culminating in a muscle that is more resistant to the stimulus of fatigue during muscle regeneration with a predominance of slow fibers. In contrast, animals early treated with the 12-LOX inhibitor presented functional fibers with higher diameters, less resistant to fatigue and predominance of fast heavy-chain myosin fibers as observed in control animals. These effects were accompanied by an earlier expression of myogenic factor MyoD. Our results suggest that both 5-LOX and 12-LOX pathways represent potential therapeutic targets for muscle regeneration. It appears that inhibition of the 5-LOX pathway represses only the degenerative process by reducing tissue inflammation levels. Meanwhile, inhibition of the 12-LOX pathway also favors the anticipation of maturation and earlier recovery of muscle fiber activity function after injury.


Subject(s)
Arachidonate 12-Lipoxygenase , Muscular Diseases , Mice , Animals , Arachidonate 12-Lipoxygenase/pharmacology , Arachidonate 5-Lipoxygenase/pharmacology , Muscle Fibers, Skeletal , Muscle, Skeletal
3.
Toxicol Appl Pharmacol ; 461: 116384, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36702313

ABSTRACT

The administration of non-steroidal anti-inflammatory drugs in the treatment of injury and muscle regeneration is still contradictory in effectiveness, especially regarding the timing of their administration. This can interfere with the production of prostaglandins originating from inflammatory isoform cyclooxygenase-2 (COX-2), which is essential to modulate tissue regeneration. The phospholipases A2 (PLA2) from viperid venoms cause myotoxicity, therefore constituting a tool for the study of supportive therapies to improve skeletal muscle regeneration. This study investigated the effect of early administration of lumiracoxib (selective inhibitor of COX-2) on the degeneration and regeneration stages of skeletal muscle after injury induced by a myotoxic PLA2. After 30 min and 48 h of intramuscular injection of PLA2, mice received lumiracoxib orally and histological, functional, and transcriptional parameters of muscle were evaluated from 6 h to 21 days. Inhibition of COX-2 in the early periods of PLA2-induced muscle degeneration reduced leukocyte influx, edema, and tissue damage. After the second administration of lumiracoxib, in regenerative stage, muscle showed increase in number of basophilic fibers, reduction in fibrosis content and advanced recovery of functionality characterized by the presence of fast type II fibers. The expression of Pax7 and myogenin were increased, indicating a great capacity for storing satellite cells and advanced mature state of tissue. Our data reveals a distinct role of COX-2-derived products during muscle degeneration and regeneration, in which early administration of lumiracoxib was a therapeutic strategy to modulate the effects of prostaglandins, providing a breakthrough in muscle tissue regeneration induced by a myotoxic PLA2.


Subject(s)
Crotalid Venoms , Myotoxicity , Mice , Animals , Cyclooxygenase 2/genetics , Myotoxicity/pathology , Muscle, Skeletal , Phospholipases A2 , Prostaglandins , Crotalid Venoms/toxicity
4.
Front Immunol ; 13: 866097, 2022.
Article in English | MEDLINE | ID: mdl-35479074

ABSTRACT

Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the "cAMP-adenosine pathway." The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, ß2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of ß2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.


Subject(s)
Adenosine , Asthma , Adenosine/metabolism , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/therapeutic use , Asthma/drug therapy , Humans , Receptors, Adrenergic , Signal Transduction/physiology
5.
Biochem Pharmacol ; 192: 114713, 2021 10.
Article in English | MEDLINE | ID: mdl-34331910

ABSTRACT

In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the ß2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that ß2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.


Subject(s)
Adenosine/metabolism , Cyclic AMP/metabolism , Extracellular Fluid/metabolism , Muscle, Smooth/metabolism , Trachea/metabolism , Animals , Male , Organ Culture Techniques , Rats , Rats, Wistar
6.
Toxicol In Vitro ; 70: 105029, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33059000

ABSTRACT

Some of the adverse side-effects such as leukocytosis, hyperinsulinemia, hypoglycemia and sensitization to histamine, caused by diphtheria, tetanus and whole cell pertussis (DTwP) vaccines are related to the presence of non-inactivated pertussis toxin (PTx) residues (NiPTxR). The CHO cell clustering assay is an in vitro assay to measure NiPTxR in DTwP vaccines based on the ability of active PTx to cause cellular clustering. To study the biochemical mechanism involved in the clustering effect in CHO cells induced by PTx and by two DTwP vaccines, the levels of total cyclic cAMP were measured and compared to those obtained after treatment with cholera toxin (CTx) able to induce CHO cells elongation instead of cell clustering. Our results showed an increment of cAMP levels by CTx and total cell elongation in CHO cells. However, changes in cAMP levels were not associated with the total clustering induced by PTx or by DTwP vaccines. The high correlation seen between the levels of NiPTxR in the DTwP vaccines determined by the in vivo lethal histamine sensitization (HIST) assay and the in vitro CHO cell clustering assay indicated that the latter could be a suitable alternative test to HIST assay for the toxicological approval and release of batches of DTwP vaccines in their final formulation for human use in accordance with the application of the 3R's principle.


Subject(s)
Biological Assay/methods , Cell Aggregation/drug effects , Cholera Toxin/pharmacology , Cyclic AMP/pharmacology , Diphtheria-Tetanus-Pertussis Vaccine/pharmacology , Pertussis Toxin/pharmacology , Animals , CHO Cells , Cell Survival/drug effects , Cricetulus , Histamine/metabolism , Mitotic Index , Quality Control
7.
J Mol Med (Berl) ; 98(11): 1561-1571, 2020 11.
Article in English | MEDLINE | ID: mdl-32895732

ABSTRACT

Crotamine is a polypeptide isolated from the venom of a South American rattlesnake. Among the properties and biological activities of crotamine, the most extraordinary is its ability to enter cells with unique selective affinity and cytotoxic activity against actively proliferating cells, such as tumor cells. This peptide is also a cargo carrier, and anticipating commercial application of this native polypeptide as a potential theranostic compound against cancer, we performed here a side-by-side characterization of a chemically synthesized full-length crotamine compared with its native counterpart. The structural, biophysical, and pharmacological properties were evaluated. Comparative NMR studies showed structural conservation of synthetic crotamine. Moreover, similarly to native crotamine, the synthetic polypeptide was also capable of inhibiting tumor growth in vivo, increasing the survival of mice bearing subcutaneous tumor. We also confirmed the ability of synthetic crotamine to transfect and transport DNA into eukaryotic cells, in addition to the importance of proteoglycans on cell surface for its internalization. This work opens new opportunities for future evaluation of chimeric and/or point-mutated analogs of this snake polypeptide, aiming for improving crotamine properties and applications, as well as possibly diminishing its potential toxic effects. KEY MESSAGES: • Synthetic crotamine showed ex vivo and in vivo activities similar to native peptide. • Synthetic crotamine structure conservation was demonstrated by NMR analysis. • Synthetic crotamine is able to transfect and transport DNA into eukaryotic cells. • Synthetic crotamine shows tumor growth inhibition in vivo. • Synthetic crotamine increases survival of mice bearing tumor.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Crotalid Venoms/chemistry , Crotalid Venoms/pharmacology , Animals , Biological Products/chemistry , Biological Products/pharmacology , Cell Line, Tumor , Cells, Cultured , Disease Models, Animal , Humans , Magnetic Resonance Spectroscopy , Mice , Peptides/chemistry , Peptides/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
J Cardiovasc Pharmacol ; 74(6): 542-548, 2019 12.
Article in English | MEDLINE | ID: mdl-31517779

ABSTRACT

Hypertension represents an autonomic dysfunction, characterized by increased sympathetic and decreased parasympathetic cardiovascular tone leading to resting tachycardia. Therefore, studies assessing hypertension-associated changes in isolated cardiac tissues were conducted under electric field stimulation to stimulate the neurons. Herein, we characterize the influence of the autonomic neurotransmitter on the baseline atrial chronotropism of unpaced isolated right atria of normotensive Wistar rats (NWR) and spontaneously hypertensive rats (SHR). Our results revealed a resting bradycardia in tissues from SHR in comparison to NWR. The release of autonomic neurotransmitters, acetylcholine or norepinephrine, still occurs in the electrically unstimulated right atrium, after excision of the sympathetic nerve, which could explain differences in basal heart rate between NWR and SHR. Nicotine and the acetylcholinesterase inhibitor physostigmine reduced the chronotropism of right atria from either NWR or SHR. Conversely, the muscarinic receptor antagonist atropine did not affect the basal chronotropism of tissues from both strains. Furthermore, tyramine increased the chronotropism of NWR and SHR atria indicating availability of the neuronal stocks of noradrenaline. Although the monoamine uptake inhibitor cocaine increased right atrium chronotropism in both strains, the basal heart rate was not affected by the ß-adrenoceptor antagonist propranolol. In summary, after acute section of the sympathetic nerve, autonomic neurotransmitters are still released either in resting conditions or upon pharmacological stimulation of right atria from both strains. Nevertheless, autonomic neurotransmission does not affect resting chronotropism, nor is the responsible for reduced basal heart rate of the isolated right atrium of hypertensive rats.


Subject(s)
Atrial Function, Right , Autonomic Nervous System/physiopathology , Blood Pressure , Bradycardia/physiopathology , Heart Atria/innervation , Heart Rate , Hypertension/physiopathology , Acetylcholine/metabolism , Adaptation, Physiological , Animals , Atrial Function, Right/drug effects , Autonomic Nervous System/drug effects , Autonomic Nervous System/metabolism , Bradycardia/diagnosis , Bradycardia/etiology , Disease Models, Animal , Electric Stimulation , Heart Rate/drug effects , Hypertension/complications , Hypertension/diagnosis , Male , Neurotransmitter Agents/pharmacology , Norepinephrine/metabolism , Rats, Inbred SHR , Rats, Wistar , Time Factors
9.
PLoS Negl Trop Dis ; 12(8): e0006700, 2018 08.
Article in English | MEDLINE | ID: mdl-30080908

ABSTRACT

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10-25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.


Subject(s)
Crotalid Venoms/pharmacology , Hindlimb , Muscle, Skeletal/drug effects , Paralysis , Potassium Channels, Voltage-Gated/metabolism , Voltage-Gated Sodium Channels/metabolism , 4-Aminopyridine/administration & dosage , 4-Aminopyridine/pharmacology , Animals , Crotalid Venoms/administration & dosage , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Pain Measurement , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Tetrodotoxin/administration & dosage , Tetrodotoxin/pharmacology , Voltage-Gated Sodium Channel Blockers/administration & dosage , Voltage-Gated Sodium Channel Blockers/pharmacology
10.
Plos Neglect. Trop. Dis. ; 12(8): e0006700, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15654

ABSTRACT

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.

11.
Plos Neglect Trop Dis, v. 12, n. 8, e0006700, ago. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2593

ABSTRACT

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.

13.
Sci Rep ; 6: 20780, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26856437

ABSTRACT

Nitric oxide (NO) is an important signaling messenger involved in different mitochondrial processes but only few studies explored the participation of NO in mitochondrial abnormalities found in patients with genetic mitochondrial deficiencies. In this study we verified whether NO synthase (NOS) activity was altered in different types of mitochondrial abnormalities and whether changes in mitochondrial function and NOS activity could be associated with the induction of apoptosis. We performed a quantitative and integrated analysis of NOS activity in individual muscle fibres of patients with mitochondrial diseases, considering mitochondrial function (cytochrome-c-oxidase activity), mitochondrial content, mitochondrial DNA mutation and presence of apoptotic nuclei. Our results indicated that sarcolemmal NOS activity was increased in muscle fibres with mitochondrial proliferation, supporting the relevance of neuronal NOS in the mitochondrial biogenesis process. Sarcoplasmic NOS activity was reduced in cytochrome-c-oxidase deficient fibres, probably as a consequence of the involvement of NO in the regulation of the respiratory chain. Alterations in NOS activity or mitochondrial abnormalities were not predisposing factors to apoptotic nuclei. Taken together, our results show that NO can be considered a potential molecular target for strategies to increase mitochondrial content and indicate that this approach may not be associated with increased apoptotic events.


Subject(s)
Apoptosis , Mitochondria, Muscle/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Dynamics , Muscle Fibers, Skeletal/metabolism , Nitric Oxide/biosynthesis , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Mitochondria, Muscle/genetics , Mitochondria, Muscle/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Proteins/genetics , Muscle Proteins/metabolism , Nitric Oxide/genetics , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism
14.
Eur J Pharmacol ; 720(1-3): 326-34, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24140436

ABSTRACT

Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.


Subject(s)
Adenylyl Cyclase Inhibitors , Calcium Channels, L-Type/physiology , Calcium/physiology , Muscle, Skeletal/physiology , Adenine/analogs & derivatives , Adenine/pharmacology , Adenylyl Cyclases/physiology , Animals , Calcium Channel Blockers/pharmacology , Cyclic AMP/physiology , Isometric Contraction/drug effects , Isometric Contraction/physiology , Male , Mice , Muscle, Skeletal/drug effects , Nifedipine/pharmacology , Verapamil/pharmacology
15.
Int J Mol Sci ; 13(12): 17160-84, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23242154

ABSTRACT

 Nitric oxide (NO) has been implicated in several cellular processes as a signaling molecule and also as a source of reactive nitrogen species (RNS). NO is produced by three isoenzymes called nitric oxide synthases (NOS), all present in skeletal muscle. While neuronal NOS (nNOS) and endothelial NOS (eNOS) are isoforms constitutively expressed, inducible NOS (iNOS) is mainly expressed during inflammatory responses. Recent studies have demonstrated that NO is also involved in the mitochondrial biogenesis pathway, having PGC-1α as the main signaling molecule. Increased NO synthesis has been demonstrated in the sarcolemma of skeletal muscle fiber and NO can also reversibly inhibit cytochrome c oxidase (Complex IV of the respiratory chain). Investigation on cultured skeletal myotubes treated with NO donors, NO precursors or NOS inhibitors have also showed a bimodal effect of NO that depends on the concentration used. The present review will discuss the new insights on NO roles on mitochondrial biogenesis and function in skeletal muscle. We will also focus on potential therapeutic strategies based on NO precursors or analogs to treat patients with myopathies and mitochondrial deficiency.


Subject(s)
Mitochondria, Muscle/metabolism , Mitochondrial Turnover/physiology , Muscle, Skeletal/metabolism , Nitric Oxide/metabolism , Animals , Electron Transport Complex IV/metabolism , Humans , Muscle, Skeletal/cytology , Nitric Oxide Synthase/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/metabolism
16.
J Pharmacol Exp Ther ; 341(3): 820-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22438472

ABSTRACT

ß(2)-Adrenoceptor (ß(2)-AR) agonists increase skeletal muscle contractile force via activation of G(s) protein/adenylyl cyclases (AC) and increased generation of cAMP. Herein, we evaluated the possible dual coupling of ß(2)-AR to G(s) and G(i) proteins and the influence of the ß(2)-AR/G(s)-G(i)/cAMP signaling cascade on skeletal muscle contraction. Assuming that the increment of intracellular cAMP is followed by cAMP efflux and extracellular generation of adenosine, the contribution of the extracellular cAMP-adenosine pathway on the ß(2)-AR inotropic response was also addressed. The effects of clenbuterol/fenoterol (ß(2)-AR agonists), forskolin (AC activator), cAMP/8-bromo-cAMP, and adenosine were evaluated on isometric contractility of mouse diaphragm muscle induced by supramaximal direct electrical stimulation (0.1 Hz, 2 ms duration). Clenbuterol/fenoterol (10-1000 µM), 1 µM forskolin, and 20 µM rolipram induced transient positive inotropic effects that peaked 30 min after stimulation onset, declining to 10 to 20% of peak levels in 30 min. The late descending phase of the ß(2)-AR agonist inotropic effect was mimicked by either cAMP or adenosine and abolished by preincubation of diaphragm with pertussis toxin (PTX) (G(i) signaling inhibitor) or the organic anion transporter inhibitor probenecid, indicating a delayed coupling of ß(2)-AR to G(i) protein which depends on cAMP efflux. Remarkably, the PTX-sensitive ß(2)-AR inotropic effect was inhibited by the A(1) adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine and ecto-5'-phosphodiesterase inhibitor α,ß-methyleneadenosine 5'-diphosphate sodium salt, indicating that ß(2)-AR coupling to G(i) is indirect and dependent on A(1) receptor activation. The involvement of the extracellular cAMP-adenosine pathway in ß(2)-AR signaling would provide a negative feedback loop that may limit stimulatory G protein-coupled receptor positive inotropism and potential deleterious effects of excessive contractile response.


Subject(s)
Adenosine/physiology , Cyclic AMP/physiology , Diaphragm/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Adrenergic, beta-2/metabolism , Adrenergic beta-2 Receptor Agonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Animals , Clenbuterol/pharmacology , Colforsin/pharmacology , Diaphragm/drug effects , Electric Stimulation , Feedback, Physiological/physiology , Fenoterol/pharmacology , Male , Mice , Muscle Contraction/physiology , Rolipram/pharmacology , Signal Transduction/physiology
17.
J Appl Physiol (1985) ; 111(6): 1710-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21921242

ABSTRACT

The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with ß-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.


Subject(s)
Muscle Proteins/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Adrenergic beta-2 Receptor Agonists/pharmacology , Aging/metabolism , Animals , Cyclic AMP/metabolism , Drug Evaluation, Preclinical/methods , In Vitro Techniques , Male , Muscle Denervation , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/injuries , Muscle, Skeletal/innervation , Proteolysis/drug effects , Rats , Rats, Wistar , Signal Transduction/drug effects , Tyrosine/metabolism
18.
Eur J Pharmacol ; 660(2-3): 411-9, 2011 Jun 25.
Article in English | MEDLINE | ID: mdl-21497158

ABSTRACT

We have recently synthesized a new series of hybrid compounds having the moieties of tacrine, a potent inhibitor of brain and peripheral acetylcholinesterase (AChE), and nimodipine, a blocker of L-type voltage-dependent calcium channels (VDCCs). These compounds were designed to target AChE and L calcium channels in the brain, as potential therapeutic agents in Alzheimer's disease. We performed the present study to determine the main peripheral side effects of two of these compounds, ITH12117 and ITH12118. We have here shown that in rat vas deferens these compounds inhibited AChE with a potency about 1000-fold lower than that of physostigmine or tacrine. Furthermore, the hybrid compounds enhanced contractions evoked by acetylcholine, with a potency about 100-fold lower than that of physostigmine or tacrine. Additionally, contractions induced by Ca2+ on depolarized vas deferens were blocked by nimodipine with greater efficacy, compared with ITH12117 and ITH12118. Compound ITH12118 (1 µM) caused a pronounced inhibition of the tonic (but not phasic) contraction elicited by electrical field stimulation. Furthermore, the same dose of nimodipine and ITH12118 blocked by 75% cytosolic Ca2+ elevations produced by acetylcholine, noradrenaline, or ATP. As a matter of comparison, we showed that rat brain cortex AChE was inhibited by ITH12118 with a potency 10 to 20-fold higher than that for vas deferens. This study shows that ITH12118 could be a paradigmatic multitarget compound having selective brain effects with smaller peripheral side effects. This may help to orient the search of new neuroprotective compounds with potential therapeutic application in Alzheimer's disease.


Subject(s)
Acetylcholinesterase/metabolism , Calcium/metabolism , Cholinesterase Inhibitors/pharmacology , Muscle Contraction/drug effects , Tacrine/pharmacology , Vas Deferens/metabolism , Vas Deferens/physiology , Acetylcholine/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Butyrylcholinesterase/metabolism , Calcium/pharmacology , Cerebral Cortex/enzymology , Cytosol/drug effects , Cytosol/metabolism , Electric Stimulation , Fura-2/pharmacology , Humans , In Vitro Techniques , Male , Nimodipine/pharmacology , Norepinephrine/pharmacology , Physostigmine/pharmacology , Rats , Rats, Wistar , Vas Deferens/cytology , Vas Deferens/drug effects
19.
Respir Physiol Neurobiol ; 175(2): 212-9, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21084061

ABSTRACT

Seven-transmembrane receptors mediate diverse skeletal muscle responses for a wide variety of stimuli, via activation of heterotrimeric G-proteins. Herein we evaluate the expression and activation of rat diaphragm or cultured skeletal muscle G-proteins using [(35)S]GTPγS. Total membrane Gα subunit content was 4-7 times higher in rat primary cultured myotubes and L6 cell line than in diaphragm (32.6±1.2fmol/mg protein) and 7-27% of them were in the active conformational state. Immunoprecipitation assay showed equal expression of diaphragm Gαs, Gαq and Gαi/o. Addition of GDP allowed the measurement of G-protein activation by different GPCR, including adrenoceptor, adenosine, melatonin and muscarinic receptors. Diaphragm denervation resulted in a marked increase in both total and active state G-protein levels. Together, the results show that [(35)S]GTPγS binding assay is a sensitive and valuable method to evaluate GPCR activity in skeletal muscle cells, which is of particular interest for pharmacological analysis of drugs with potential use in the management of respiratory muscle failure.


Subject(s)
Diaphragm/enzymology , Heterotrimeric GTP-Binding Proteins/physiology , Animals , Cells, Cultured , Diaphragm/drug effects , Diaphragm/innervation , Guanosine Diphosphate/pharmacology , Male , Muscarinic Agonists/pharmacology , Oxotremorine/pharmacology , Phrenic Nerve/drug effects , Phrenic Nerve/physiology , Rats , Rats, Wistar , Receptors, Adrenergic/drug effects , Receptors, Adrenergic/physiology , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/physiology , Receptors, Melatonin/drug effects , Receptors, Melatonin/physiology , Receptors, Muscarinic/drug effects , Receptors, Muscarinic/physiology , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/physiology
20.
Chem Biol Interact ; 186(1): 9-15, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20399201

ABSTRACT

The role of acetylcholinesterase (AChE) in the termination of the cholinergic response through acetylcholine (ACh) hydrolysis and the involvement of plasma butyrylcholinesterase (BuChE), mainly of hepatic origin, in the metabolism of xenobiotics with ester bonds is well known. Besides, BuChE has a crucial role in ACh hydrolysis, especially when selective anticholinesterases inhibit AChE. Herein, we analyzed the gender-related differences and the circadian changes of rat plasma cholinesterases. Plasma and liver cholinesterase activities were evaluated in control or 2-30-day castrated adult male and female rats. Plasma and liver AChE activities did not differ between genders and were not influenced by sex hormone deprivation. BuChE plasma activity was 7 times greater in female, reflecting gender differences in liver enzyme expression. Castration increased liver and plasma BuChE activity in male, while reduced it in female, abolishing gender differences in enzyme activity. Interestingly, female AChE and BuChE plasma activities varied throughout the day, reaching values 27% and 42% lower, respectively, between 2 p.m. and 6 p.m. when compared to the morning peaks at 8 a.m. Castration attenuated daily female BuChE oscillation. On the other hand, male plasma enzymes remained constant throughout the day. In summary, our results show that liver and plasma BuChE, but not AChE, expression is influenced by sex hormones, leading to high levels of blood BuChE in females. The fluctuation of female plasma BuChE during the day should be taken into account to adjust the bioavailability and the therapeutic effects of cholinesterase inhibitors used in cholinergic-based conditions such Alzheimer's disease.


Subject(s)
Acetylcholinesterase/blood , Butyrylcholinesterase/blood , Circadian Rhythm , Gonadal Steroid Hormones/metabolism , Sex Characteristics , Acetylcholinesterase/metabolism , Animals , Body Weight , Butyrylcholinesterase/metabolism , Castration , Female , Liver/metabolism , Male , Organ Size , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...