Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4200, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760342

ABSTRACT

The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Differentiation , Extracellular Matrix , Germ Cells , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Extracellular Matrix/metabolism , Germ Cells/metabolism , Germ Cells/cytology , Cell Differentiation/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Signal Transduction , Cell Lineage/genetics , Oocytes/metabolism , Oocytes/cytology
2.
G3 (Bethesda) ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36454093

ABSTRACT

DMD-9 is a Caenorhabditis elegans Doublesex/MAB-3 Domain transcription factor (TF) of unknown function. Single-cell transcriptomics has revealed that dmd-9 is highly expressed in specific head sensory neurons, with lower levels detected in non-neuronal tissues (uterine cells and sperm). Here, we characterized endogenous dmd-9 expression and function in hermaphrodites and males to identify potential sexually dimorphic roles. In addition, we dissected the trans- and cis-regulatory mechanisms that control DMD-9 expression in neurons. Our results show that of the 22 neuronal cell fate reporters we assessed in DMD-9-expressing neurons, only the neuropeptide-encoding flp-19 gene is cell-autonomously regulated by DMD-9. Further, we did not identify defects in behaviors mediated by DMD-9 expressing neurons in dmd-9 mutants. We found that dmd-9 expression in neurons is regulated by 4 neuronal fate regulatory TFs: ETS-5, EGL-13, CHE-1, and TTX-1. In conclusion, our study characterized the DMD-9 expression pattern and regulatory logic for its control. The lack of detectable phenotypes in dmd-9 mutant animals suggests that other proteins compensate for its loss.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Male , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Semen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Neurons/metabolism , DNA-Binding Proteins/metabolism
3.
Front Mol Neurosci ; 15: 974208, 2022.
Article in English | MEDLINE | ID: mdl-36090252

ABSTRACT

Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.

4.
Gene ; 813: 146131, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34933077

ABSTRACT

The retina is a complex system containing several neuron types arranged in distinct layers. Many aspects of the retina's development and the molecular events in the human light-sensing system have been previously unveiled. However, there is limited information about regulatory networks governing the transitional stages during retina development. To address this issue, we have studied the transcriptome dynamics of mice-derived retinal organoid development in 10 successive time-points, from stem cell to functional retina. For the first time, we have identified the main modules of genes related to different stages of development and predicted all possible transcription factors. A major shift in the transcriptome occurs during the transition of cells from D0 to D10 and again at the late stages of retina development. Transcription, nervous system development, cell cycle, neurotransmitter transport, glycosylation, and lipid metabolisms are the most important biological processes during retina development. Altogether, we have identified and reported 15 TFs, including Irx2, Irx3, Lmo2, Tead2, Tbx20, and Zeb1, which are potentially involved in the regulation of retinal organoid development. In conclusion, using several rigorous analyses, we have found main stage-specific biological processes in the retina development and predicted TFs with strong potency in controlling this structure.


Subject(s)
Gene Regulatory Networks , Organoids/physiology , Retina/physiology , Animals , Cell Differentiation/genetics , Databases, Genetic , Gene Expression , Homeodomain Proteins/genetics , Mice , Organogenesis/genetics , Organoids/growth & development , Organoids/metabolism , Retina/growth & development , Retina/metabolism , T-Box Domain Proteins/genetics , Transcription Factors/genetics , Transcriptome
5.
Front Neurosci ; 15: 745376, 2021.
Article in English | MEDLINE | ID: mdl-34646119

ABSTRACT

Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.

6.
BMC Genomics ; 21(1): 688, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33008304

ABSTRACT

BACKGROUND: Müllerian ducts are paired embryonic tubes that give rise to the female reproductive tract in vertebrates. Many disorders of female reproduction can be attributed to anomalies of Müllerian duct development. However, the molecular genetics of Müllerian duct formation is poorly understood and most disorders of duct development have unknown etiology. In this study, we describe for the first time the transcriptional landscape of the embryonic Müllerian duct, using the chicken embryo as a model system. RNA sequencing was conducted at 1 day intervals during duct formation to identify developmentally-regulated genes, validated by in situ hybridization. RESULTS: This analysis detected hundreds of genes specifically up-regulated during duct morphogenesis. Gene ontology and pathway analysis revealed enrichment for developmental pathways associated with cell adhesion, cell migration and proliferation, ERK and WNT signaling, and, interestingly, axonal guidance. The latter included factors linked to neuronal cell migration or axonal outgrowth, such as Ephrin B2, netrin receptor, SLIT1 and class A semaphorins. A number of transcriptional modules were identified that centred around key hub genes specifying matrix-associated signaling factors; SPOCK1, HTRA3 and ADGRD1. Several novel regulators of the WNT and TFG-ß signaling pathway were identified in Müllerian ducts, including APCDD1 and DKK1, BMP3 and TGFBI. A number of novel transcription factors were also identified, including OSR1, FOXE1, PRICKLE1, TSHZ3 and SMARCA2. In addition, over 100 long non-coding RNAs (lncRNAs) were expressed during duct formation. CONCLUSIONS: This study provides a rich resource of new candidate genes for Müllerian duct development and its disorders. It also sheds light on the molecular pathways engaged during tubulogenesis, a fundamental process in embryonic development.


Subject(s)
Gene Expression Regulation, Developmental , Mullerian Ducts/metabolism , Transcriptome , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Chick Embryo , Female , Mullerian Ducts/embryology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Comput Biol Chem ; 83: 107155, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31706153

ABSTRACT

Cisplatin ceases cell division and induces apoptosis in cancer cell lines. It is well established that cisplatin alters the expression of many genes involved in several cellular processes and pathways including transcription, p53 signaling pathway, and apoptosis. However, system-wide responses to cisplatin in breast cancer cell lines have not been studied. Therefore, we have used a network analysis approach to unveil such responses at early stages of drug treatment. To do this, we have first identified those genes that are responding to cisplatin treatment in MCF-7 cell line. Network and gene ontology analyses were then employed to uncover the molecular pathways affected by cisplatin treatment. Then the results obtained from cisplatin-treated MCF7 cell line were compared to those obtained from other cancer cell lines at comparable time points. In conclusion, we found that ADCY9, GSK3B, MAPK14, NCK1, NCOA2, PIK3CA, PIK3CB, PTK2, RHOB act as hub genes in the cisplatin-responsive regulatory network at the pro-apoptotic stages. The results could be useful in finding new drugs to target these genes in order to obtain similar responses.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cisplatin/pharmacology , Gene Ontology , Antineoplastic Agents/chemistry , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cisplatin/chemistry , Drug Discovery , Drug Screening Assays, Antitumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/drug effects , Humans , MCF-7 Cells , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Interaction Maps , Software
9.
PLoS One ; 14(7): e0219486, 2019.
Article in English | MEDLINE | ID: mdl-31291334

ABSTRACT

The prominent characteristic of Alzheimer's disease (AD) is the accumulation of amyloid beta (Abeta) proteins in the form of plaques that cause molecular and cellular alterations in the brain. Due to the paucity of brain samples of early-stage Abeta aggregation, animal models have been developed to study early events in AD. Caenorhabditis elegans is a genetically tractable animal model for AD. Here, we used transcriptomic data, network-based protein-protein interactions and weighted gene co-expression network analysis (WGCNA), to detect modules and their gene ontology in response to Abeta aggregation in C. elegans. Additionally, hub genes and their orthologues in human and mouse were identified to study their relation to AD. We also found several transcription factors (TFs) responding to Abeta accumulation. Our results show that Abeta expression in C. elegans relates to general processes such as molting cycle, locomotion, and larval development plus AD-associated processes, including protein phosphorylation, and G-protein coupled receptor-regulated pathways. We reveal that many hub genes and TFs including ttbk-2, daf-16, and unc-49 have human and mouse orthologues that are directly or potentially associated with AD and neural development. In conclusion, using systems biology we identified important genes and biological processes in C. elegans that respond to Abeta aggregation, which could be used as potential diagnostic or therapeutic targets. In addition, because of evolutionary relationship to AD in human, we suggest that C. elegans is a useful model for studying early molecular events in AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Gene Regulatory Networks , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Disease Models, Animal , Gene Expression Profiling , Humans , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Interaction Maps , Sequence Homology, Nucleic Acid , Systems Biology
10.
Gene Expr Patterns ; 34: 119063, 2019 12.
Article in English | MEDLINE | ID: mdl-31279979

ABSTRACT

Genomic imprinting is an epigenetic process result in silencing of one of the two alleles (maternal or paternal) based on the parent of origin. Dysregulation of imprinted genes results in detectable developmental and differential abnormalities. Epigenetics erasure is required for resetting the cell identity to a ground state during the production of induced pluripotent stem (iPS) cells from somatic cells. There are some contradictory reports regarding the status of the imprinting marks in the genome of iPS cells. Additionally, many studies highlighted the existence of subtle differences in the imprinting loci between different types of iPS cells and embryonic stem (ES) cells. These observations could ultimately undermine the use of patient-derived iPS cells for regenerative medicine.


Subject(s)
Epigenesis, Genetic/genetics , Genomic Imprinting/genetics , Stem Cells/metabolism , Alleles , Animals , DNA Methylation/genetics , Embryonic Stem Cells/metabolism , Genomic Imprinting/physiology , Humans , Induced Pluripotent Stem Cells/metabolism
11.
J Cell Physiol ; 234(5): 6489-6502, 2019 05.
Article in English | MEDLINE | ID: mdl-30246428

ABSTRACT

Development of an embryo from a single cell, zygote, to multicellular morulae requires activation of hundreds of genes that were mostly inactivated before fertilization. Inevitably, transcription factors (TFs) would be involved in modulating the drastic changes in gene expression pattern observed at all preimplantation stages. Despite many ongoing efforts to uncover the role of TFs at the early stages of embryogenesis, still many unanswered questions remained that need to be explored. This could be done by studying the expression pattern of multiple genes obtained by high-throughput techniques. In the current study, we have identified a set of TFs that are involved in the progression of the zygote to blastocyst. Global gene expression patterns of consecutive stages were compared and differences documented. Expectedly, at the early stages of development, only a few sets of TFs differentially expressed while at the later stages hundreds of TFs appear to be upregulated. Interestingly, the expression levels of many TFs show an oscillation pattern during development indicating a need for their precise expression. A significant shift in gene expression was observed during the transition from four- to eight-cell stages, an indication of zygote genome activation. Additionally, we have found 11 TFs that were common in all stages including ATF3, EN1, IFI16, IKZF3, KLF3, NPAS3, NR2F2, RUNX1, SOX2, ZBTB20, and ZSCAN4. However, their expression patterns did not follow similar trends in the steps studied. Besides, our findings showed that both upregulation and active downregulation of the TFs expression is required for successful embryogenesis. Furthermore, our detailed network analysis identified the hub TFs for each transition. We found that HNF4A, FOXA2, and EP300 are the three most important elements for the first division of zygote.


Subject(s)
Embryonic Development/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transcriptome , E1A-Associated p300 Protein/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 4/genetics , Humans
12.
J Cell Physiol ; 234(4): 5215-5229, 2019 04.
Article in English | MEDLINE | ID: mdl-30203456

ABSTRACT

Neurodegenerative diseases are disorders in the central nervous system with consequent progressive neurological symptoms including behavioral and cognitive disabilities. Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, multiple sclerosis, and schizophrenia are the most important and abundant neurodegenerative diseases that affect different parts of the brain. Detailed studies unveiled the molecular mechanisms and pathways affected in each of these disorders. The role of many genes has been documented in the onset and progression of each disease. Although many system-level approaches have been used to understand the exact cause of these diseases, there is no comparative analysis in this regard. Despite all differences in the molecular basis of these diseases, overlapping symptoms might indicate the involvement of the similar pathways and processes. Here, we have applied a system biology approach to uncover many aspects of main neurodegenerative diseases using microarray data obtained from 118 cases of postmortem brain samples. Our analysis has identified key genes that might contribute to the status of diseases. We have also compared the involved biological process and pathway between different disease to find possible similar mechanisms that exist in all of them. We also predicted potentially important transcription factors in each disease and predicted the core gene regulatory networks. We have provided a list of possible new key regulators that could be further explored and also discussed the role of these hub genes. The results of this study would be useful to develop new diagnostic strategies and also to find new drug targets.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Nerve Degeneration/genetics , Neurodegenerative Diseases/genetics , Systems Biology , Transcription Factors/genetics , Transcriptome , Case-Control Studies , Genetic Predisposition to Disease , Humans , Neurodegenerative Diseases/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Protein Interaction Maps , Signal Transduction/genetics , Transcription Factors/metabolism
13.
PLoS One ; 13(8): e0201674, 2018.
Article in English | MEDLINE | ID: mdl-30086151

ABSTRACT

Sepsis is a life-threatening syndrome causing thousands of deaths yearly worldwide. Sepsis is a result of infection and could lead to systemic inflammatory responses and organ failures. Additionally, blood cells, as the main cells in the immune systems, could be also affected by sepsis. Here, we have used different network analysis approaches, including Weighted Gene Co-expression Network Analysis (WGCNA), Protein-Protein Interaction (PPI), and gene regulatory network, to dissect system-level response to sepsis by the main white blood cells. Gene expression profiles of Neutrophils (NTs), Dendritic Cells (DCs), and Peripheral Blood Mononuclear Cells (PBMCs) that were exposed to septic plasma were obtained and analyzed using bioinformatics approaches. Individual gene expression matrices and the list of differentially expressed genes (DEGs) were prepared and used to construct several networks. Consequently, key regulatory modules and hub genes were detected through network analysis and annotated through ontology analysis extracted from DAVID database. Our results showed that septic plasma affected the regulatory networks in NTs, PBMCs more than the network in DCs. Gene ontology of DEGs revealed that signal transduction and immune cells responses are the most important biological processes affected by sepsis. On the other hand, network analysis detected modules and hub genes in each cell types. It was found that pathways involved in immune cells, signal transduction, and apoptotic processes are among the most affected pathways in the responses to sepsis. Altogether, we have found several hub genes including ADORA3, CD83 CDKN1A, FFAR2, GNAQ, IL1B, LTB, MAPK14, SAMD9L, SOCS1, and STAT1, which might specifically respond to sepsis infection. In conclusion, our results uncovered the system-level responses of the main white blood cells to sepsis and identified several hub genes with potential applications for therapeutic and diagnostic purposes.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Leukocytes, Mononuclear/immunology , Neutrophils/immunology , Sepsis/immunology , Databases, Genetic , Dendritic Cells/enzymology , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Immunity, Cellular , Protein Interaction Maps , Sepsis/genetics
14.
Gene Expr Patterns ; 29: 1-9, 2018 09.
Article in English | MEDLINE | ID: mdl-29625185

ABSTRACT

Epigenetic modifications are involved in global reprogramming of the cell transcriptome. Therefore, synchronized major shifts in the expression of many genes could be achieved through epigenetic changes. The regulation of gene expression could be implemented by different epigenetic events including histone modifications, DNA methylation and chromatin remodelling. Interestingly, it has been documented that reprogramming of somatic cells to induced pluripotent stem (iPS) cells is also a typical example of epigenetic modifications. Additionally, epigenetic would determine the fates of almost all cells upon differentiation of stem cells into somatic cells. Currently, generation of iPS cells through epigenetic modifications is a routine laboratory practice. Despite all our knowledge, inconsistency in the results of reprogramming and differentiation of stem cells, highlight the need for more thorough investigation into the role of epigenetic modification in generation and maintenance of stem cells. Besides, subtle differences have been observed among different iPS cells and between iPS and ES cells. Although, a handful of detailed review regarding the status of epigenetics in stem cells has been published previously, in the current review, an abstracted and rather simplified view has been presented for those who want to gain a more general overview on this subject. However, almost all key references and ground breaking studies were included, which could be further explored to gain more in depth knowledge regarding this topic. The most dominant epigenetic changes have been presented followed by the impacts of such changes on the global gene expression. Epigenetic status in iPS and ES cells were compared. In addition to including the issues related to X-chromosome reactivation in the stem cells, we have also included loss of imprinting for some genes as a major drawback in generation of iPS cells. Finally, the overall impacts of epigenetic modifications on different aspects of stem cells has been discussed, including their use in cell therapy.


Subject(s)
Cellular Reprogramming , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation , DNA Methylation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...