Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-19162987

ABSTRACT

This paper presents a nonlinear approach for time-frequency representations (TFR) data analysis, based on a statistical learning methodology - support vector regression (SVR), that being a nonlinear framework, matches recent findings on the underlying dynamics of cardiac mechanic activity and phonocardiographic (PCG) recordings. The proposed methodology aims to model the estimated TFRs, and extract relevant features to perform classification between normal and pathologic PCG recordings (with murmur). Modeling of TFR is done by means of SVR, and the distance between regressions is calculated through dissimilarity measures based on dot product. Finally, a k-nn classifier is used for the classification stage, obtaining a validation performance of 97.85%.


Subject(s)
Heart Murmurs/diagnosis , Phonocardiography/statistics & numerical data , Adult , Artificial Intelligence , Biomedical Engineering , Case-Control Studies , Diagnosis, Computer-Assisted/statistics & numerical data , Fourier Analysis , Heart Murmurs/classification , Heart Murmurs/physiopathology , Humans , Nonlinear Dynamics , Regression Analysis , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL