Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
3D Print Med ; 8(1): 22, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35844030

ABSTRACT

BACKGROUND: Malignancies of the head and neck region, encompassing cutaneous, mucosal, and sarcomatous histologies, are complex entities to manage, comprising of coordination between surgery, radiation therapy, and systemic therapy. Malignancies of the posterior scalp are particular challenging to treat with radiation therapy, given its irregular contours and anatomy as well as the superficial location of the target volume. Bolus material is commonly used in radiation therapy to ensure that the dose to the skin and subcutaneous tissue is appropriate and adequate, accounting for the buildup effect of megavoltage photon treatment. The use of commercially available bolus material on the posterior scalp potentially creates air gaps between the bolus and posterior scalp. CASE PRESENTATIONS: In this report, we created and utilized a custom 3D-printed integrated bolus and headrest for 5 patients to irradiate malignancies involving the posterior scalp, including those with cutaneous squamous cell carcinoma, melanoma, malignant peripheral nerve sheath tumor, and dermal sarcoma. Treatment setup was consistently reproducible, and patients tolerated treatment well without any unexpected adverse effects. CONCLUSIONS: We found that the use of this custom 3D-printed integrated bolus/headrest allowed for comfortable, consistent, and reproducible treatment set up while minimizing the risk of creating significant air gaps and should be considered in the radiotherapeutic management of patients with posterior scalp malignancies.

2.
Med Phys ; 46(11): 4918-4922, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31437308

ABSTRACT

PURPOSE: The goal of this study was to investigate x-ray beam profiles at various water depths to characterize the two-dimensional x-ray dose distribution, allowing for off-axis and out-of-field radiation dose estimation for a wide range of x-ray beam spectra commonly encountered in fluoroscopically guided interventional procedures. METHODS: A Siemens Artis interventional fluoroscope was operated in a service mode to generate a continuous x-ray beam at fixed x-ray beam spectra, defined by their kVp and the thickness of additional copper filtration. A PTW scanning water tank with a diode detector was used to measure the x-ray beam profiles at several depths in water at various fields of view and x-ray beam spectra, both parallel and perpendicular to the anode-cathode axis direction. RESULTS: X-ray beam profiles, including out-of-field tails, were characterized for a wide range of beam qualities. The anode heel effect was pronounced even at depth, resulting in large dose variations across the x-ray field; this effect was even more definite at large fields of view, at higher kVps, and in the absence of additional copper filtration. CONCLUSIONS: This study investigated and characterized 2D radiation dose deposition in water from x-ray beam spectra commonly used by modern fluoroscopes in interventional procedures. This knowledge can be applied to manual dosimetry calculations or can be used to refine the accuracy of automated dose mapping tools or Monte Carlo simulations of the radiation dose to soft tissue within the x-ray field and to tissue adjacent to the primary beam. Additionally, this study illustrates a substantial reduction of the anode heel effect by using moderate amounts of additional copper filtration to harden the x-ray beam spectrum.


Subject(s)
Copper , Fluoroscopy/methods , Radiation Dosage , Filtration , Fluoroscopy/instrumentation , Monte Carlo Method , Radiometry , X-Rays
3.
Med Phys ; 44(4): 1275-1286, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28094856

ABSTRACT

PURPOSE: In this investigation, we sought to characterize X-ray beam qualities and quantitate percent depth dose (PDD) curves for fluoroscopic X-ray beams incorporating added copper (Cu) filtration, such as those commonly used in fluoroscopically guided interventions (FGI). The intended application of this research is for dosimetry in soft tissue from FGI procedures using these data. METHODS: All measurements in this study were acquired on a Siemens (Erlangen, Germany) Artis zeego fluoroscope. X-ray beam characteristics of first half-value layer (HVL), second HVL, homogeneity coefficients (HCs), backscatter factors (BSFs) and kVp accuracy and precision were determined to characterize the X-ray beams used for the PDD measurements. A scanning water tank was used to measure PDD curves for 60, 80, 100, and 120 kVp X-ray beams with Cu filtration thicknesses of 0.0, 0.1, 0.3, 0.6, and 0.9 mm at 11 cm, 22 cm, and 42 cm nominal fields of view, in water depths of 0 to 150 mm. RESULTS: X-ray beam characteristics of first HVLs and HCs differed from previous published research of fluoroscopic X-ray beam qualities without Cu filtration. PDDs for 60, 80, 100, and 120 kVp with 0 mm of Cu filtration were comparable to previous published research, accounting for differences in fluoroscopes, geometric orientation, type of ionization chamber, X-ray beam quality, and the water tank used for data collection. PDDs and X-ray beam characteristics for beam qualities with Cu filtration are presented, which have not been previously reported. CONCLUSIONS: The data sets of X-ray beam characteristics and PDDs presented in this study can be used to estimate organ or soft tissue doses at depth involving similar beam qualities or to compare with mathematical models.


Subject(s)
Copper , Fluoroscopy/methods , Radiation Dosage , Female , Fetus/radiation effects , Fluoroscopy/instrumentation , Humans , Monte Carlo Method , Pregnancy , X-Rays
4.
Cancer Res ; 75(8): 1760-9, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25712125

ABSTRACT

Glioma stem-like cells (GSC) are a subpopulation of cells in tumors that are believed to mediate self-renewal and relapse in glioblastoma (GBM), the most deadly form of primary brain cancer. In radiation oncology, hyperthermia is known to radiosensitize cells, and it is reemerging as a treatment option for patients with GBM. In this study, we investigated the mechanisms of hyperthermic radiosensitization in GSCs by a phospho-kinase array that revealed the survival kinase AKT as a critical sensitization determinant. GSCs treated with radiation alone exhibited increased AKT activation, but the addition of hyperthermia before radiotherapy reduced AKT activation and impaired GSC proliferation. Introduction of constitutively active AKT in GSCs compromised hyperthermic radiosensitization. Pharmacologic inhibition of PI3K further enhanced the radiosensitizing effects of hyperthermia. In a preclinical orthotopic transplant model of human GBM, thermoradiotherapy reduced pS6 levels, delayed tumor growth, and extended animal survival. Together, our results offer a preclinical proof-of-concept for further evaluation of combined hyperthermia and radiation for GBM treatment.


Subject(s)
Glioma/therapy , Hyperthermia, Induced , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects , Oncogene Protein v-akt/antagonists & inhibitors , Radiation Tolerance , Animals , Cell Death/radiation effects , Cell Proliferation/genetics , Cell Proliferation/radiation effects , Cells, Cultured , Combined Modality Therapy , DNA Repair/radiation effects , Glioma/genetics , Glioma/pathology , Humans , Mice , Mice, Nude , Neoplastic Stem Cells/pathology , Oncogene Protein v-akt/genetics , Oncogene Protein v-akt/metabolism , Radiation Tolerance/genetics , Signal Transduction/genetics , Signal Transduction/radiation effects
5.
J Environ Monit ; 7(10): 999-1006, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16193172

ABSTRACT

Bromate (BrO(3)(-)) is a disinfection by-product formed during ozonation of potable water supplies containing bromide (Br(-)). Bromate has been classed by the World Health Organisation as a 'possible human carcinogen', leading to implementation of 10-25 microg L(-1)(as BrO(3)(-)) drinking water limits in legislative areas including the United States and European Union. Techniques have been developed for bromate analysis at and below regulatory limits, with Ion Chromatography (IC) coupled with conductivity detection (IC-CD), post-column reaction and ultra-violet (UV) detection (IC-PCR), or inductively coupled plasma-mass spectrometry detection (IC-ICPMS) in widespread use. The recent discovery of bromate groundwater contamination in a UK aquifer has led to a requirement for analysis of bromate in a groundwater matrix, for environmental monitoring and development of remediation strategies. The possibility of bromate-contaminated water discharge into sewage treatment processes, whether accidental or as a pump-and-treat strategy, also required bromate analysis of wastewater sources. This paper summarises techniques currently available for trace bromate analysis in potable water systems and details studies to identify a methodology for routine analysis of groundwater and wastewater samples. Strategies compared were high performance liquid chromatography (HPLC) with direct UV or PCR/UV detection, IC-CD, IC-PCR, and a simple spectrophotometric technique. IC-CD was the most cost-effective solution for simultaneous analysis of bromate and bromide within groundwater samples, having a 5 microg L(-1) detection limit of both anions with limited interference from closely-eluting species. Wastewater samples were successfully analysed for bromate only using HPLC with PCR/UV detection, with detection limits below 20 microg L(-1)(as BrO(3)(-)) and low interference. HPLC with direct UV detection was unsuitable for bromate analysis within the concentration range 50-5000 microg L(-1) which was required for this project, but column choice was shown to be a major factor in determining limits of detection. Spectrophotometry could not reproducibly determine bromate concentration, although the technique showed promise as a quick field method for high-level groundwater bromate analysis.


Subject(s)
Bromates/analysis , Fresh Water/chemistry , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Electric Conductivity , Mass Spectrometry , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...