Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 20(12): 1117-26, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10382827

ABSTRACT

Acridine orange labelled, washed human platelets were counted and tracked on polyvinyl alcohol (PVA), heparin-PVA and polyethylene (PE)-coated coverslips with a view to understand why transient contact on the PVA hydrogels lead to elevated platelet activation and consumption relative to polyethylene. Over the 4 min of initial contact that was studied, platelet adhesion was higher on PE than on PVA or heparin-PVA at both 40 and 200 s(-1), as expected, regardless of whether the surfaces were pre-treated with albumin or fibrinogen. Not all platelets appearing to make contact with the surface, actually attached. For example, less than 2% of the platelets contacting albumin pre-treated PVA (at 40 s(-1)) remained adherent at the end of the initial 60 s observation time, while the corresponding number for PE was greater than 9%. A greater fraction of the platelets remained adherent at the higher shear rate or with fibrinogen pre-treatment, but the difference between PVA and PE remained similar: for example, with fibrinogen pre-treatment at 200 s(-1), approximately 25% of the platelet contacts resulted in adhesion on PVA while 66% did so on PE. While net platelet adhesion was less for the hydrogels, than for PE, the total number of contacts (adherents + non-adherents) were more comparable and unexpectedly higher for albumin pre-treatment than for fibrinogen. Net platelet adhesion is but one component of the total platelet interaction with a material surface. Fluorescent video microscopy has been shown to be a useful, albeit not unequivocal, method for assessing the platelets that make contact with but do not adhere to a surface. reserved


Subject(s)
Biocompatible Materials , Blood Platelets/physiology , Heparin , Hydrogels , Platelet Adhesiveness/physiology , Polyethylenes , Polyvinyl Alcohol , Fibrinogen/physiology , Humans , In Vitro Techniques , Microscopy, Video , Serum Albumin, Bovine/physiology
2.
Toxicol Appl Pharmacol ; 145(2): 388-98, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9266813

ABSTRACT

Data from laboratory animal experiments are often used in setting guidelines for safe levels of human exposure to inhaled materials. The F344 rat has been used extensively in laboratory experiments to determine effects of exposure to inhaled materials in the nasal passages. Many inhaled materials induce toxic responses in the olfactory (posterior) region of the rat nasal passages. The location of major airflow routes has been proposed as playing a dominant role in determining some olfactory lesion location patterns. Since nasal airflow patterns differ significantly among species, methods are needed to assess conditions under which these differences may significantly affect extrapolation of the effects of local dose in animals to potential disease outcome in humans. A computational fluid dynamics model of airflow and inhaled gas uptake has been used to predict dose to airway walls in the anterior F344 rat nasal passages (Kimbell et al., Toxicol. Appl. Pharmacol., 1993; 121, 253-263). To determine the role of nasal airflow patterns in affecting olfactory lesion distribution, this model was extended to include the olfactory region. Serial-step histological sections of the nasal passages of a F344 rat were used to construct the computer model. Simulations of inspiratory airflow throughout the rat nasal passages were consistent with previously reported experimental data. Four of the five major simulated flow streams present in the anterior nose (dorsal lateral, middle, ventral lateral, and ventral medial streams) flowed together to exit ventrally at the nasopharyngeal duct, bypassing the ethmoid recesses. The remaining dorsal medial stream split to flow both medially and laterally through the olfactory-epithelium-lined ethmoid recesses in a Z-shaped pattern when viewed sagitally. Simulated flow in the ethmoid recesses was more than an order of magnitude slower than flow in the anterior and ventral parts of the nasal passages. Somewhat higher volumes of flow were predicted in the dorsal medial stream when the nasal vestibule was reshaped to be upturned, and more flow was allocated to the dorsal medial stream with increased inspiratory airflow rate, suggesting that rats may be able to allocate more airflow to this stream by both modifying the shape of the nasal vestibule and increasing inhaled air velocity during sniffing. The present study provides the first description of flow in the complex olfactory region of the nose of the F344 rat. This model will be used to evaluate the role of airflow patterns in determining the distribution of xenobiotically induced olfactory mucosal lesions. This information, combined with models of disposition in the airway lining, will provide comprehensive dosimetry models for extrapolating animal response data to humans.


Subject(s)
Computer Simulation , Models, Anatomic , Models, Biological , Nasal Cavity/anatomy & histology , Nasal Cavity/physiology , Pulmonary Ventilation/physiology , Animals , Male , Rats , Rats, Inbred F344
3.
Comput Methods Programs Biomed ; 47(2): 97-112, 1995 Jul.
Article in English | MEDLINE | ID: mdl-7587166

ABSTRACT

Flow of fluids, such as blood, lymph and air, plays a major role in the normal physiology of all living organisms. Within individual organ systems, flow fields may significantly influence the transport of solutes, including nutrients and chemical toxicants, to and from the confining vessel walls (epithelia and endothelia). Computational fluid dynamics (CFD) provides a potentially useful tool for biologists and toxicologists investigating solute disposition in these flow fields in both normal and disease states. Application of CFD is dependent upon generation of accurate representations of the geometry of the system of interest in the form of a computational reconstruction. The present investigations, which were based on studies of the toxicology of inhaled reactive gases in the respiratory tract of rodents, provide computer programs for the generation of finite element meshes from serial tissue cross-sections. These programs, which interface with a commercial finite element fluid dynamics simulation package (FIDAP 7.05, Fluid Dynamics International, Evanston, IL), permit simulation of fluid flow in the complex geometries and local solute mass flux to the vessel walls of biological systems. The use of these programs and their application to studies of respiratory tract toxicology are described.


Subject(s)
Computer Graphics , Models, Biological , Nose/anatomy & histology , User-Computer Interface , Algorithms , Animals , Biological Transport , Image Processing, Computer-Assisted , Nose/physiology , Pulmonary Gas Exchange/physiology , Rats , Rats, Inbred F344 , Respiratory Physiological Phenomena , Software Design , Surface Properties
4.
Toxicol Appl Pharmacol ; 121(2): 253-63, 1993 Aug.
Article in English | MEDLINE | ID: mdl-8346542

ABSTRACT

For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory tract during the breathing cycle. Since data on respiratory tract lesions in F344 rats are extrapolated to humans to make predictions of risk to human health, a better understanding of the factors affecting these responses is needed. To assess potential effects of nasal airflow on lesion location and severity, a methodology was developed for creation of computer simulations of steady-state airflow and gas transport using a three-dimensional finite element grid reconstructed from serial step-sections of the nasal passages of a male F344 rat. Simulations on a supercomputer used the computational fluid dynamics package FIDAP (FDI, Evanston, IL). Distinct streams of bulk flow evident in the simulations matched inspiratory streams reported for the F344 rat. Moreover, simulated regional flow velocities matched measured velocities in concurrent laboratory experiments with a hollow nasal mold. Computer-predicted flows were used in simulations of gas transport to nasal passage walls, with formaldehyde as a test case. Results from the uptake simulations were compared with the reported distribution of formaldehyde-induced nasal lesions observed in the F344 rat, and indicated that airflow-driven uptake patterns probably play an important role in determining the location of certain nasal lesions induced by formaldehyde. This work demonstrated the feasibility of applying computational fluid dynamics to airflow-driven dosimetry of inhaled chemicals in the upper respiratory tract.


Subject(s)
Nose/physiology , Pharmacokinetics , Pulmonary Ventilation/physiology , Radiotherapy Planning, Computer-Assisted/methods , Administration, Inhalation , Air Pollutants/adverse effects , Air Pollutants/pharmacokinetics , Animals , Computer Simulation , Gases/adverse effects , Gases/pharmacokinetics , Male , Nose/anatomy & histology , Nose/drug effects , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...