Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 953665, 2022.
Article in English | MEDLINE | ID: mdl-36017340

ABSTRACT

Most cartilaginous fishes live in seawater (SW), but a few exceptional elasmobranchs (sharks and rays) are euryhaline and can acclimate to freshwater (FW) environments. The plasma of elasmobranchs is high in NaCl and urea concentrations, which constrains osmotic water loss. However, these euryhaline elasmobranchs maintain high levels of plasma NaCl and urea even when acclimating to low salinity, resulting in a strong osmotic gradient from external environment to body fluid. The kidney consequently produces a large volume of dilute urine to cope with the water influx. In the present study, we investigated the molecular mechanisms of dilute urine production in the kidney of Japanese red stingray, Hemitrygon akajei, transferred from SW to low-salinity environments. We showed that red stingray maintained high plasma NaCl and urea levels by reabsorbing more osmolytes in the kidney when transferred to low salinity. RNA-seq and qPCR analyses were conducted to identify genes involved in NaCl and urea reabsorption under the low-salinity conditions, and the upregulated gene expressions of Na+-K+-Cl- cotransporter 2 (nkcc2) and Na+/K+-ATPase (nka) were found in the FW-acclimated individuals. These upregulations occurred in the early distal tubule (EDT) in the bundle zone of the kidney, which coils around the proximal and collecting tubules to form the highly convoluted structure of batoid nephron. Considering the previously proposed model for urea reabsorption, the upregulation of nkcc2 and nka not only causes the reabsorption of NaCl in the EDT, but potentially also supports enhanced urea reabsorption and eventually the production of dilute urine in FW-acclimated individuals. We propose advantageous characteristics of the batoid-type nephron that facilitate acclimation to a wide range of salinities, which might have allowed the batoids to expand their habitats.

2.
Zoolog Sci ; 37(5): 458-466, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32972087

ABSTRACT

Batoidea (rays and skates) is a monophyletic subgroup of elasmobranchs that diverged from the common ancestor with Selachii (sharks) about 270 Mya. A larger number of batoids can adapt to low-salinity environments, in contrast to sharks, which are mostly stenohaline marine species. Among osmoregulatory organs of elasmobranchs, the kidney is known to be dedicated to urea retention in ureosmotic cartilaginous fishes. However, we know little regarding urea reabsorbing mechanisms in the kidney of batoids. Here, we performed physiological and histological investigations on the nephrons in the red stingray (Hemitrygon akajei) and two shark species. We found that the urine/plasma ratios of salt and urea concentrations in the stingray are significantly lower than those in cloudy catshark (Scyliorhinus torazame) under natural seawater, indicating that the kidney of stingray more strongly reabsorbs these osmolytes. By comparing the three-dimensional images of nephrons between stingray and banded houndshark (Triakis scyllium), we showed that the tubular bundle of stingray has a more compact configuration. In the compact tubular bundle of stingray kidney, the distal diluting tubule was highly developed and frequently coiled around the proximal and collecting tubules. Furthermore, co-expression of NKAα1 (Na+/K +-ATPase) and NKCC2 (Na+- K+-2Cl- cotransporter 2) mRNAs was prominent in the coiled diluting segment. These findings imply that NaCl reabsorption is greatly facilitated in the stingray kidney, resulting in a higher reabsorption rate of urea. Lowering the loss of osmolytes in the glomerular filtrate is likely favorable to the adaptability of batoids to a wide range of environmental salinity.


Subject(s)
Nephrons/physiology , Skates, Fish/physiology , Sodium Chloride/metabolism , Animals , Nephrons/anatomy & histology , Skates, Fish/anatomy & histology
3.
Sci Total Environ ; 408(16): 3443-7, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20435341

ABSTRACT

Iodine-131 (physical half-life: 8.04 days) was detected in brown algae collected off the Japanese coast. Brown algae have been extensively used as bioindicators for radioiodine because of their ability to accumulate radionuclides in high concentration factors. The maximum measured specific activity of (131)I in brown algae was 0.37 + or - 0.010 Bq/kg-wet. Cesium-137 was also detected in all brown algal samples used in this study. There was no correlation between specific activities of (131)I and (137)Cs in these seaweeds. The specific activity of (137)Cs ranged from 0.0034 + or - 0.00075 to 0.090 + or - 0.014 Bq/kg-wet. Low specific activity and minimal variability of (137)Cs in brown algae indicated that past nuclear weapon tests were the source of (137)Cs. Although nuclear power stations and nuclear fuel reprocessing plants are known to be pollution sources of (131)I, there was no relationship between the sites where (131)I was detected and the locations of nuclear power facilities. Most of the sites where (131)I was detected were near big cities with large populations. Iodine-131 is frequently used in diagnostic and therapeutic nuclear medicine. On the basis of the results, we suggest that the likely pollution source of (131)I, detected in brown seaweeds, is not nuclear power facilities, but nuclear medicine procedures.


Subject(s)
Iodine Radioisotopes/analysis , Phaeophyceae/chemistry , Japan
4.
Ann N Y Acad Sci ; 1040: 184-8, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15891023

ABSTRACT

Prolactin (PRL) is an important regulator of multiple biological functions, and the control of PRL expression integrates a wide spectrum of molecules throughout vertebrates. PRL-releasing peptide (PrRP) seems to be an essential stimulator of PRL transcription and secretion in teleost pituitary and peripheral organs. In the amphibious euryhaline mudskipper, the localization of mRNA levels of PrRP and PRL as well as their regulation during acclimation to different environments are closely related. The presence of PrRP-PRL axes in the peripheral organs might suggest an ancient history of this axis prior to the evolution of the hypothalamus-pituitary, and it is possible that the PrRP is an original and primary regulator of PRL. In the euryhaline fishes, the permeability of gut of seawater-acclimated fish is generally greater than that of the freshwater (FW)-acclimated fish. The modification in the epithelial cell renewal system may play an important role in regulation of the permeability. PRL induces the cell proliferation during FW acclimation, whereas cortisol stimulates both cell proliferation and apoptosis. Indeed, a large proportion of the various actions of PRL seem to be associated directly or indirectly with cell proliferation and/or apoptosis, which might be a primary function of PRL.


Subject(s)
Fishes/physiology , Prolactin/physiology , Amino Acid Sequence , Animals , Humans , Molecular Sequence Data , Prolactin/metabolism , Thyrotropin-Releasing Hormone/metabolism , Thyrotropin-Releasing Hormone/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...