Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 60(10): 2557-2567, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37599845

ABSTRACT

Accumulated ethylene in fruit storage/transportation causes rapid senescence resulting in reduced shelf-life and postharvest losses. The aim of this study was to investigate the application of vacuum ultraviolet (VUV) photolysis modular reactor for fruit storage. The first experiment compared the effectiveness of VUV photolysis reactor with the standard fruit industry adsorbent (potassium permanganate, KMnO4) on the removal of ethylene from mixed-fruit loading of apples, banana, and pears stored at ambient temperature (16 °C) for 6 days. Second study evaluated the impact of direct VUV radiation on quality attributes of apples stored at 10 °C for 21 days. Results showed that ethylene produced in mixed-fruit loading storage significantly (p < 0.05) reduced by 86.9% in the storage chamber connected to VUV modular reactor compared to 25.4% for storage under potassium permanganate. Direct exposure of apples to VUV radiation successfully reduced both ethylene and respiration rate but damaged the skin of the apples. Hue angle and lightness (L*) for apples exposed to VUV radiation declined significantly (p < 0.05) from 60.7 ± 1.09 to 33.5 ± 9.51 and 58.1 ± 3.60 to 50.4 ± 1.13, respectively. This study showed the potential of VUV photolysis as an innovative technique for removing ethylene from storage facility.

2.
PLoS One ; 11(4): e0153000, 2016.
Article in English | MEDLINE | ID: mdl-27104954

ABSTRACT

Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and its asymptote as the Thiele modulus becomes large, are presented. The evaluation of the effectiveness factor is based on the solution of the governing equations for solute transport in the two regions of the reactor, i.e. the lumen and the matrix (with the biofilm immobilized in the matrix). The lumen solution accounts for both axial diffusion and radial convective flow, while the matrix solution is based on Robin-type boundary conditions. The effectiveness factor is shown to be a function of the Thiele modulus, the partition coefficient, the Sherwood number, the Peclet number, and membrane thickness. Three regions of Thiele moduli are defined in the effectiveness factor graphs. These correspond with reaction rate limited, internal-diffusion limited, and external mass transfer limited solute transport. Radial convective flows were shown to only improve the effectiveness factor in the region of internal diffusion limitation. The assumption of first order kinetics is shown to be applicable only in the Thiele modulus regions of internal and external mass transfer limitation. An iteration scheme is also presented for estimating the effectiveness factor when the solute fractional conversion is known. The model is validated with experimental data from a membrane gradostat reactor immobilised with Phanerochaete chrysosporium for the production of lignin and manganese peroxidases. The developed model and experimental data allow for the determination of the Thiele modulus at which the effectiveness factor and fractional conversion are optimal.


Subject(s)
Bioreactors , Membranes, Artificial , Biocatalysis , Kinetics , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...