Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 213(11): 1846-56, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27067195

ABSTRACT

Dietary lipids modulate immunity, yet the means by which specific fatty acids affect infectious disease susceptibility remains unclear. Deciphering lipid-induced immunity is critical to understanding the balance required for protecting against pathogens while avoiding chronic inflammatory diseases. To understand how specific lipids alter susceptibility to enteric infection, we fed mice isocaloric, high-fat diets composed of corn oil (rich in n-6 polyunsaturated fatty acids [n-6 PUFAs]), olive oil (rich in monounsaturated fatty acids), or milk fat (rich in saturated fatty acids) with or without fish oil (rich in n-3 PUFAs). After 5 weeks of dietary intervention, mice were challenged with Citrobacter rodentium, and pathological responses were assessed. Olive oil diets resulted in little colonic pathology associated with intestinal alkaline phosphatase, a mucosal defense factor that detoxifies lipopolysaccharide. In contrast, while both corn oil and milk fat diets resulted in inflammation-induced colonic damage, only milk fat induced compensatory protective responses, including short chain fatty acid production. Fish oil combined with milk fat, unlike unsaturated lipid diets, had a protective effect associated with intestinal alkaline phosphatase activity. Overall, these results reveal that dietary lipid type, independent of the total number of calories associated with the dietary lipid, influences the susceptibility to enteric damage and the benefits of fish oil during infection.


Subject(s)
Citrobacter rodentium , Dietary Fats/therapeutic use , Energy Intake , Enterobacteriaceae Infections/diet therapy , Animals , Caco-2 Cells , Colon/microbiology , Corn Oil/administration & dosage , Corn Oil/therapeutic use , Diet, High-Fat , Dietary Fats/immunology , Disease Susceptibility , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/prevention & control , Female , Fish Oils/therapeutic use , Humans , Lipopolysaccharides/metabolism , Mice , Mice, Inbred C57BL , Milk , Olive Oil/administration & dosage , Olive Oil/therapeutic use , Phosphorylation , Treatment Outcome
2.
ISME J ; 10(2): 321-32, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26274050

ABSTRACT

Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Animals , Anti-Bacterial Agents/adverse effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Disease Progression , Humans , Intestines/drug effects , Intestines/immunology , Male , Mice , Mice, Inbred NOD , Th17 Cells/drug effects , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...