Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881728

ABSTRACT

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


Subject(s)
Selection, Genetic , Triticum/genetics , Edible Grain/genetics , Edible Grain/metabolism , Genome, Plant , Genotype , Phenotype , Principal Component Analysis , Triticum/growth & development
2.
Front Plant Sci ; 10: 1337, 2019.
Article in English | MEDLINE | ID: mdl-31736994

ABSTRACT

Snow mold is a yield-limiting disease of wheat in the Pacific Northwest (PNW) region of the US, where there is prolonged snow cover. The objectives of this study were to identify genomic regions associated with snow mold tolerance in a diverse panel of PNW winter wheat lines in a genome-wide association study (GWAS) and to evaluate the usefulness of genomic selection (GS) for snow mold tolerance. An association mapping panel (AMP; N = 458 lines) was planted in Mansfield and Waterville, WA in 2017 and 2018 and genotyped using the Illumina® 90K single nucleotide polymorphism (SNP) array. GWAS identified 100 significant markers across 17 chromosomes, where SNPs on chromosomes 5A and 5B coincided with major freezing tolerance and vernalization loci. Increased number of favorable alleles was related to improved snow mold tolerance. Independent predictions using the AMP as a training population (TP) to predict snow mold tolerance of breeding lines evaluated between 2015 and 2018 resulted in a mean accuracy of 0.36 across models and marker sets. Modeling nonadditive effects improved accuracy even in the absence of a close genetic relatedness between the TP and selection candidates. Selecting lines based on genomic estimated breeding values and tolerance scores resulted in a 24% increase in tolerance. The identified genomic regions associated with snow mold tolerance demonstrated the genetic complexity of this trait and the difficulty in selecting tolerant lines using markers. GS was validated and showed potential for use in PNW winter wheat for selecting on complex traits such tolerance to snow mold.

3.
Plant Phenomics ; 2019: 4528719, 2019.
Article in English | MEDLINE | ID: mdl-33313527

ABSTRACT

Many wheat (Triticum aestivum L.) production regions are threatened annually by drought stress. Carbon isotope discrimination (Δ) has been identified as a potentially useful trait in breeding for improved drought tolerance in certain environments. Broad use of Δ as a selection criterion is limited, however, mainly due to an inconsistent relationship observed between grain yield and Δ and, to a lesser extent, because of the high resource demand associated with phenotyping. The efficiency of selection may be improved by the identification and verification of molecular markers for use in marker-assisted selection (MAS), and a reliable relationship to grain yield may be established based on a location's total amount and distribution of precipitation over the growing season. Given the environmental variability in precipitation dynamics, it is necessary to evaluate this relationship in target breeding environments. In this study, grain Δ was collected on a panel of 480 advanced soft white winter wheat varieties grown in five Pacific Northwest environments. A genome-wide association study approach was used to evaluate the amenability of grain Δ to MAS. The genetic architecture of grain Δ was determined to be characterized by multiple, small effect marker-trait associations with limited repeatability across environments, suggesting that MAS will be ineffective at improving Δ selection efficiency. Further, the relationship between grain yield and Δ ranged from neutral (r = -0.01) to moderately positive (r = 0.44) in the target environments. Such moderate correlations, coupled with variability in this relationship, indicate that direct selection for Δ may not be beneficial.

4.
Front Plant Sci ; 9: 271, 2018.
Article in English | MEDLINE | ID: mdl-29593752

ABSTRACT

Soft white wheat is used in domestic and foreign markets for various end products requiring specific quality profiles. Phenotyping for end-use quality traits can be costly, time-consuming and destructive in nature, so it is advantageous to use molecular markers to select experimental lines with superior traits. An association mapping panel of 469 soft white winter wheat cultivars and advanced generation breeding lines was developed from regional breeding programs in the U.S. Pacific Northwest. This panel was genotyped on a wheat-specific 90 K iSelect single nucleotide polymorphism (SNP) chip. A total of 15,229 high quality SNPs were selected and combined with best linear unbiased predictions (BLUPs) from historical phenotypic data of the genotypes in the panel. Genome-wide association mapping was conducted using the Fixed and random model Circulating Probability Unification (FarmCPU). A total of 105 significant marker-trait associations were detected across 19 chromosomes. Potentially new loci for total flour yield, lactic acid solvent retention capacity, flour sodium dodecyl sulfate sedimentation and flour swelling volume were also detected. Better understanding of the genetic factors impacting end-use quality enable breeders to more effectively discard poor quality germplasm and increase frequencies of favorable end-use quality alleles in their breeding populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...