Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 95(1): 153-63, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24649655

ABSTRACT

Ecosystem-wide primary productivity generally increases with primary producer diversity, emphasizing the importance of diversity for ecosystem function. However, most studies that demonstrate this positive relationship have focused on terrestrial and aquatic benthic systems, with little attention to the diverse marine pelagic primary producers that play an important role in regulating global climate. Here we show how phytoplankton biodiversity enhances overall marine ecosystem primary productivity and other ecosystem functions using a self-organizing ecosystem model. Diversity manipulation numerical experiments reveal positive, asymptotically saturating relationships between ecosystem-wide phytoplankton diversity and functions of productivity, nutrient uptake, remineralization, and diversity metrics used to identify mechanisms shaping these relationships. Increase in productivity with increasing diversity improves modeled ecosystem stability and model robustness and leads to productivity rates that exceed expected yields primarily through niche complementarity and facilitative interactions between coexisting phytoplankton types; the composition of traits in assemblages determines the magnitude of complementarity and selection effects. While findings based on these aggregate measures of diversity effects parallel those from the majority of experimental outcomes of terrestrial and benthic biodiversity-ecosystem function studies, we combine analyses of community diversity effects and investigations of the underlying interactions among phytoplankton types to demonstrate how an increase in recycled production of non-diatoms through an increase in new production of diatoms drives this diversity-cosystem function response. We demonstrate the important role that facilitation plays in the modeled marine plankton and how this facilitative interaction could amplify future climate-driven changes in ocean ecosystem productivity.


Subject(s)
Bacteria/classification , Biodiversity , Models, Biological , Pacific Ocean , Phytoplankton
2.
Environ Microbiol ; 12(12): 3272-89, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20678117

ABSTRACT

The abundances of six N2-fixing cyanobacterial phylotypes were profiled at 22 stations across the tropical Atlantic Ocean during June 2006, and used to model the contribution of the diazotrophs to N2 fixation. Diazotroph abundances were measured by targeting the nifH gene of Trichodesmium, unicellular groups A, B, C (UCYN-A, UCYN-B and UCYN-C), and diatom-cyanobiont symbioses Hemiaulus-Richelia, Rhizosolenia-Richelia and Chaetoceros-Calothrix. West to east gradients in temperature, salinity and nutrients [NO3⁻ + NO2⁻, PO4³â», Si(OH)4] showed the influence of the Amazon River plume and its effect on the distributions of the diazotrophs. Trichodesmium accounted for more than 93% of all nifH genes detected, dominated the warmer waters of the western Atlantic, and was the only diazotroph detected at the equatorial upwelling station. UCYN-A was the next most abundant (> 5% of all nifH genes) and dominated the cooler waters of the eastern Atlantic near the Cape Verde Islands. UCYN-C was found at a single depth (200 m) of high salinity and low temperature and nutrients, whereas UCYN-B cells were widespread but in very low abundance (6.1 × 10¹ ± 4.6 × 10² gene copies l⁻¹). The diatom-cyanobionts were observed primarily in the western Atlantic within or near the high Si(OH)4 input of the Amazon River plume. Overall, highest diazotroph abundances were observed at the surface and declined with depth, except for some subsurface peaks in Trichodesmium, UCYN-B and UCYN-A. Modelled contributions of Trichodesmium, UCYN-B and UCYN-A to total N2 fixation suggested that Trichodesmium had the largest input, except for the potential of UCYN-A at the Cape Verde Islands.


Subject(s)
Cyanobacteria/isolation & purification , Nitrogen Fixation , Seawater/microbiology , Water Microbiology , Atlantic Ocean , Cabo Verde , Cyanobacteria/classification , Cyanobacteria/enzymology , Cyanobacteria/genetics , DNA, Bacterial/isolation & purification , Geography , Models, Biological , Oxidoreductases/genetics , Seawater/analysis , Temperature
3.
J Phycol ; 44(5): 1212-20, 2008 Oct.
Article in English | MEDLINE | ID: mdl-27041718

ABSTRACT

To develop tools for modeling diazotrophic growth in the open ocean, we determined the maximum growth rate and carbon content for three diazotrophic cyanobacteria commonly observed at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) in the subtropical North Pacific: filamentous nonheterocyst-forming Trichodesmium and unicellular Groups A and B. Growth-irradiance responses of Trichodesmium erythraeum Ehrenb. strain IMS101 and Crocosphaera watsonii J. Waterbury strain WH8501 were measured in the laboratory. No significant differences were detected between their fitted parameters (±CI) for maximum growth rate (0.51 ± 0.09 vs. 0.49 ± 0.17 d(-1) ), half-light saturation (73 ± 29 vs. 66 ± 37 µmol quanta · m(-2) · s(-1) ), and photoinhibition (0 and 0.00043 ± 0.00087 [µmol quanta · m(-2) · s(-1) ](-1) ). Maximum growth rates and carbon contents of Trichodesmium and Crocosphaera cultures conformed to published allometric relationships, demonstrating that these relationships apply to oceanic diazotrophic microorganisms. This agreement promoted the use of allometric models to approximate unknown parameters of maximum growth rate (0.77 d(-1) ) and carbon content (480 fg C · µm(-3) ) for the uncultivated, unicellular Group A cyanobacteria. The size of Group A was characterized from samples from the North Pacific Ocean using fluorescence-activated cell sorting and real-time quantitative PCR techniques. Knowledge of growth and carbon content properties of these organisms facilitates the incorporation of different types of cyanobacteria in modeling efforts aimed at assessing the relative importance of filamentous and unicellular diazotrophs to carbon and nitrogen cycling in the open ocean.

4.
ISME J ; 1(7): 606-19, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18043668

ABSTRACT

A diagnostic model based on biomass and growth was used to assess the relative contributions of filamentous nonheterocystous Trichodesmium and unicellular cyanobacteria, termed Groups A and B, to nitrogen fixation at the North Pacific Station ALOHA over a 2-year period. Average (and 95% confidence interval, CI) annual rates of modeled monthly values for Trichodesmium, Group B and Group A were 92 (52), 14 (4) and 12 (8) mmol N per m(2) per year, respectively. The fractional contribution to modeled instantaneous nitrogen fixation by each diazotroph fluctuated on interannual, seasonal and shorter time scales. Trichodesmium fixed substantially more nitrogen in year 1 (162) than year 2 (12). Group B fixed almost two times more nitrogen in year 1 (17) than year 2 (9). In contrast, Group A fixed two times more nitrogen in year 2 (16) than year 1 (8). When including uncertainties in our estimates using the bootstrap approach, the range of unicellular nitrogen fixation extended from 10% to 68% of the total annual rate of nitrogen fixation for all three diazotrophs. Furthermore, on a seasonal basis, the model demonstrated that unicellular diazotrophs fixed the majority (51%-97%) of nitrogen during winter and spring, whereas Trichodesmium dominated nitrogen fixation during summer and autumn (60%-96%). Sensitivity of the modeled rates to some parameters suggests that this unique attempt to quantify relative rates of nitrogen fixation by different diazotrophs may need to be reevaluated as additional information on cell size, variability in biomass and C:N, and growth characteristics of the different cyanobacterial diazotrophs become available.


Subject(s)
Cyanobacteria/metabolism , Models, Biological , Nitrogen Fixation , Biomass , Carbon/metabolism , Cyanobacteria/cytology , Cyanobacteria/growth & development , Hawaii , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...