Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 132(3): 120-132, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38071268

ABSTRACT

Regulation of gene expression is a critical link between genotype and phenotype explaining substantial heritable variation within species. However, we are only beginning to understand the ways that specific gene regulatory mechanisms contribute to adaptive divergence of populations. In plants, the post-transcriptional regulatory mechanism of alternative splicing (AS) plays an important role in both development and abiotic stress response, making it a compelling potential target of natural selection. AS allows organisms to generate multiple different transcripts/proteins from a single gene and thus may provide a source of evolutionary novelty. Here, we examine whether variation in alternative splicing and gene expression levels might contribute to adaptation and incipient speciation of dune-adapted prairie sunflowers in Great Sand Dunes National Park, Colorado, USA. We conducted a common garden experiment to assess transcriptomic variation among ecotypes and analyzed differential expression, differential splicing, and gene coexpression. We show that individual genes are strongly differentiated for both transcript level and alternative isoform proportions, even when grown in a common environment, and that gene coexpression networks are disrupted between ecotypes. Furthermore, we examined how genome-wide patterns of sequence divergence correspond to divergence in transcript levels and isoform proportions and find evidence for both cis and trans-regulation. Together, our results emphasize that alternative splicing has been an underappreciated mechanism providing source material for natural selection at short evolutionary time scales.


Subject(s)
Alternative Splicing , Ecotype , Protein Isoforms/genetics , Protein Isoforms/metabolism , Gene Expression Profiling , Transcriptome
2.
Mol Ecol ; 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36374153

ABSTRACT

Conspecific populations living in adjacent but contrasting microenvironments represent excellent systems for studying natural selection. These systems are valuable because gene flow is expected to force genetic homogeneity except at loci experiencing divergent selection. A history of reciprocal transplant and common garden studies in such systems, and a growing number of genomic studies, have contributed to understanding how selection operates in natural populations. While selection can vary across different fitness components and life stages, few studies have investigated how this ultimately affects allele frequencies and the maintenance of divergence between populations. Here, we study two sunflower ecotypes in distinct, adjacent habitats by combining demographic models with genome-wide sequence data to estimate fitness and allele frequency change at multiple life stages. This framework allows us to estimate that only local ecotypes are likely to experience positive population growth (λ > 1) and that the maintenance of divergent adaptation appears to be mediated via habitat- and life stage-specific selection. We identify genetic variation, significantly driven by loci in chromosomal inversions, associated with different life history strategies in neighbouring ecotypes that optimize different fitness components and may contribute to the maintenance of distinct ecotypes.

3.
Mitochondrial DNA B Resour ; 5(3): 2881-2885, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-33457987

ABSTRACT

Hirundo is the most species-rich genus of the passerine swallow family (Hirundinidae) and has a cosmopolitan distribution. Here we report the complete, annotated mitochondrial genomes for 25 individuals from 10 of the 14 extant Hirundo species; these include representatives from four subspecies of the barn swallow, H. rustica. Mitogenomes were conserved in size, ranging from 18,500 to 18,700 base pairs. They all contained 13 protein-coding regions, 22 tRNAs, a control region, and large and small ribosomal subunits. Phylogenetic analysis resolved most of the relationships between the studied species and subspecies which were largely consistent with previously published trees. Several new relationships were observed within the phylogeny that could have only been discovered with the increased amount of genetic material. This study represents the largest Hirundo mitochondrial phylogeny to date, and could serve as a vital tool for other studies focusing on the evolution of the Hirundo genus.

SELECTION OF CITATIONS
SEARCH DETAIL
...