Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 6695, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317741

ABSTRACT

The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation.

2.
Environ Sci Pollut Res Int ; 26(8): 7364-7374, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29754299

ABSTRACT

The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination, analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, we tested a macroscopic dimensioned near-infrared (NIR) process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/ soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 µm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber-optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils, and real-world samples, e.g., fermenter residue, suggests a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pretreatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Plastics/analysis , Soil/chemistry , Bioreactors , Calibration , Discriminant Analysis , Least-Squares Analysis , Polyethylene/analysis , Polyethylene Terephthalates/analysis , Polypropylenes/analysis , Polystyrenes/analysis , Spectroscopy, Near-Infrared/methods , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...