Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Soft Matter ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012310

ABSTRACT

The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology. Among these, soft matter physics has emerged as a fundamental nexus connecting and underpinning many research questions. This perspective article is a multi-voice effort to bring together different views and approaches, questions and insights, from researchers that work in this emerging area, the soft matter physics of the ground beneath our feet. In particular, we identify four major challenges concerned with the dynamics in and of the ground: (I) modeling from the grain scale, (II) near-criticality, (III) bridging scales, and (IV) life. For each challenge, we present a selection of topics by individual authors, providing specific context, recent advances, and open questions. Through this, we seek to provide an overview of the opportunities for the broad Soft Matter community to contribute to the fundamental understanding of the physics of the ground, strive towards a common language, and encourage new collaborations across the broad spectrum of scientists interested in the matter of the Earth's surface.

2.
Soft Matter ; 20(10): 2381-2393, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38376422

ABSTRACT

Colloidal suspensions are the basis of a wide variety of coatings, prepared as liquids and then dried into solid films. The processes at play during film formation, however, are difficult to observe directly. Here, we demonstrate that optical coherence tomography (OCT) can provide fast, non-contact, precise profiling of the dynamics within a drying suspension. Using a scanning Michelson interferometer with a broadband laser source, OCT creates cross-sectional images of the optical stratigraphy of a sample. With this method, we observed the drying of colloidal silica in Hele-Shaw cells with 10 µm transverse and 1.8 µm depth resolution, over a 1 cm scan line and a 15 s sampling period. The resulting images were calibrated to show how the concentration of colloidal particles varied with position and drying time. This gives access to important transport properties, for example, of how collective diffusion depends on particle concentration. Looking at early-time behaviours, we also show how a drying front initially develops, and how the induction time before the appearance of a solid film depends on the balance of diffusion and evaporation-driven motion. Pairing these results with optical microscopy and particle tracking techniques, we find that film formation can be significantly delayed by any density-driven circulation occurring near the drying front.

3.
Phys Rev Lett ; 131(15): 158303, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37897773

ABSTRACT

Filamentous cyanobacteria can show fascinating examples of nonequilibrium self-organization, which, however, are not well understood from a physical perspective. We investigate the motility and collective organization of colonies of these simple multicellular lifeforms. As their area density increases, linear chains of cells gliding on a substrate show a transition from an isotropic distribution to bundles of filaments arranged in a reticulate pattern. Based on our experimental observations of individual behavior and pairwise interactions, we introduce a nonreciprocal model accounting for the filaments' large aspect ratio, fluctuations in curvature, motility, and nematic interactions. This minimal model of active filaments recapitulates the observations, and rationalizes the appearance of a characteristic length scale in the system, based on the Péclet number of the cyanobacteria filaments.


Subject(s)
Cyanobacteria , Cytoskeleton
4.
Nat Commun ; 13(1): 5885, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202817

ABSTRACT

Understanding and controlling transport through complex media is central for a plethora of processes ranging from technical to biological applications. Yet, the effect of micro-scale manipulations on macroscopic transport dynamics still poses conceptual conundrums. Here, we demonstrate the predictive power of a conceptual shift in describing complex media by local micro-scale correlations instead of an assembly of uncorrelated minimal units. Specifically, we show that the non-linear dependency between microscopic morphological properties and macroscopic transport characteristics in porous media is captured by transport statistics on the level of pore junctions instead of single pores. Probing experimentally and numerically transport through two-dimensional porous media while gradually increasing flow heterogeneity, we find a non-monotonic change in transport efficiency. Using analytic arguments, we built physical intuition on how this non-monotonic dependency emerges from junction statistics. The shift in paradigm presented here broadly affects our understanding of transport within the diversity of complex media.


Subject(s)
Porosity
5.
J R Soc Interface ; 19(192): 20220268, 2022 07.
Article in English | MEDLINE | ID: mdl-35892203

ABSTRACT

Filamentous cyanobacteria, forming long strands of connected cells, are one of the earliest and most successful forms of life on Earth. They exhibit self-organized behaviour, forming large-scale patterns in structures like biomats and stromatolites. The mechanical properties of these rigid structures have contributed to their biological success and are important to applications like algae-based biofuel production. For active polymers like these cyanobacteria, one of the most important mechanical properties is the bending modulus, or flexural rigidity. Here, we quantify the bending stiffness of three species of filamentous cyanobacteria, of order Oscillatoriales, using a microfluidic flow device where single filaments are deflected by fluid flow. This is complemented by measurements of Young's modulus of the cell wall, via nanoindentation, and the cell wall thickness. We find that the stiffness of the cyanobacteria is well-captured by a simple model of a flexible rod, with most stress carried by a rigid outer wall. Finally, we connect these results to the curved shapes that these cyanobacteria naturally take while gliding, and quantify the forces generated internally to maintain this shape. The measurements can be used to model interactions between cyanobacteria, or with their environment, and how their collective behaviour emerges from such interactions.


Subject(s)
Cyanobacteria , Cell Wall , Elastic Modulus , Lab-On-A-Chip Devices
6.
Soft Matter ; 17(23): 5806-5814, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34032258

ABSTRACT

The mechanical properties of a disordered heterogeneous medium depend, in general, on a complex interplay between multiple length scales. Connecting local interactions to macroscopic observables, such as stiffness or fracture, is thus challenging in this type of material. Here, we study the properties of a cohesive granular material composed of glass beads held together by soft polymer bridges. We characterise the mechanical response of single bridges under traction and shear, using a setup based on the deflection of flexible micropipettes. These measurements, along with information from X-ray microtomograms of the granular packings, then inform large-scale discrete element model (DEM) simulations. Although simple, these simulations are constrained in every way by empirical measurement and accurately predict mechanical responses of the aggregates, including details on their compressive failure, and how the material's stiffness depends on the stiffness and geometry of its parts. By demonstrating how to accurately relate microscopic information to macroscopic properties, these results provide new perspectives for predicting the behaviour of complex disordered materials, such as porous rock, snow, or foam.

7.
Phys Rev E ; 102(5-1): 052903, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327175

ABSTRACT

The mechanics of cohesive or cemented granular materials is complex, combining the heterogeneous responses of granular media, like force chains, with clearly defined material properties. Here we use a discrete element model simulation, consisting of an assemblage of elastic particles connected by softer but breakable elastic bonds, to explore how this class of material deforms and fails under uniaxial compression. We are particularly interested in the connection between the microscopic interactions among the grains or particles and the macroscopic material response. To this end, the properties of the particles and the stiffness of the bonds are matched to experimental measurements of a cohesive granular medium with tunable elasticity. The criterion for breaking a bond is also based on an explicit Griffith energy balance, with realistic surface energies. By varying the initial volume fraction of the particle assembles we show that this simple model reproduces a wide range of experimental behaviors, both in the elastic limit and beyond it. These include quantitative details of the distinct failure modes of shear-banding, ductile failure, and compaction banding or anticracks, as well as the transitions between these modes. The present work, therefore, provides a unified framework for understanding the failure of porous materials such as sandstone, marble, powder aggregates, snow, and foam.

8.
Soft Matter ; 16(36): 8345-8351, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966530

ABSTRACT

In this work, we investigated the effect of the suspension properties on the drying dynamics and the resulting film peeling instability. To do so, a comprehensive series of experiments were conducted using drops of aqueous mixtures of colloidal silica dispersions and polyethylene oxide (PEO) additives. Time-lapse digital microscope images of the evaporating droplets show that film peeling can be discouraged and eventually eliminated with an increase in PEO concentration and molecular weight. This is due to the additives modifying the suspension properties which in turn modify the drying front length across the evaporating surface. Our result extends the understanding of the physics of film failure which is relevant information for various industrial processes such as in inkjet printing and coating applications.

9.
Phys Rev Lett ; 124(5): 058003, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083896

ABSTRACT

Monte Carlo simulations, fully constrained by experimental parameters, are found to agree well with a measured phase diagram of aqueous dispersions of nanoparticles with a moderate size polydispersity over a broad range of salt concentrations, c_{s}, and volume fractions, ϕ. Upon increasing ϕ, the colloids freeze first into coexisting compact solids then into a body centered cubic phase (bcc) before they melt into a glass forming liquid. The surprising stability of the bcc solid at high ϕ and c_{s} is explained by the interaction (charge) polydispersity and vibrational entropy.

10.
Philos Trans A Math Phys Eng Sci ; 377(2136)2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30478200

ABSTRACT

Avalanche statistics of various threshold-activated dynamical systems are known to depend on the magnitude of the drive, or stress, on the system. Such dependences exist for earthquake size distributions, in sheared granular avalanches, laboratory-scale fracture and also in the outage statistics of power grids. In this work, we model threshold-activated avalanche dynamics and investigate the time required to detect local variations in the ability of model elements to bear stress. We show that the detection time follows a scaling law where the scaling exponents depend on whether the feature that is sought is either weaker, or stronger, than its surroundings. We then look at earthquake data from Sumatra and California, demonstrate the trade-off between the spatial resolution of a map of earthquake exponents (i.e. the b-values of the Gutenberg-Richter Law) and the accuracy of those exponents, and suggest a means to maximize both.This article is part of the theme issue 'Statistical physics of fracture and earthquakes'.

11.
Philos Trans A Math Phys Eng Sci ; 377(2136)2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30478212

ABSTRACT

Manifestations of emergent properties in stressed disordered materials are often the result of an interplay between strong perturbations in the stress field around defects. The collective response of a long-ranged correlated multi-component system is an ideal playing field for statistical physics. Hence, many aspects of such collective responses in widely spread length and energy scales can be addressed by the tools of statistical physics. In this theme issue, some of these aspects are treated from various angles of experiments, simulations and analytical methods, and connected together by their common base of complex-system dynamics.This article is part of the theme issue 'Statistical physics of fracture and earthquakes' .

12.
Eur Phys J E Soft Matter ; 41(8): 94, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30128834

ABSTRACT

The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art.

13.
Sci Rep ; 7(1): 15572, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138494

ABSTRACT

We present an experimental micro-model of drying porous media, based on microfluidic cells made of arrays of pillars on a regular grid, and complement these experiments with a matching two-dimensional pore-network model of drying. Disorder, or small-scale heterogeneity, was introduced into the cells by randomly varying the radii of the pillars. The microfluidic chips were filled with a volatile oil and then dried horizontally, such that gravitational effects were excluded. The experimental and simulated drying rates and patterns were then compared in detail, for various levels of disorder. The geometrical features were reproduced well, although the model under-predicted the formation of trapped clusters of drying fluid. Reproducing drying rates proved to be more challenging, but improved if the additional trapped clusters were added to the model. The methods reported can be adapted to a wide range of multi-phase flow problems, and allow for the rapid development of high-precision micro-models containing tens of thousands of individual elements.

14.
Nat Commun ; 8: 15809, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28719599

ABSTRACT

A thin elastic sheet lying on a soft substrate develops wrinkled patterns when subject to an external forcing or as a result of geometric incompatibility. Thin sheet elasticity and substrate response equip such wrinkles with a global preferred wrinkle spacing length and with resistance to wrinkle curvature. These features are responsible for the liquid crystalline smectic-like behaviour of such systems at intermediate length scales. This insight allows better understanding of the wrinkling patterns seen in such systems, with which we explain pattern breaking into domains, the properties of domain walls and wrinkle undulation. We compare our predictions with numerical simulations and with experimental observations.

15.
Philos Trans A Math Phys Eng Sci ; 375(2093)2017 May 13.
Article in English | MEDLINE | ID: mdl-28373384

ABSTRACT

Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

16.
Soft Matter ; 13(5): 1040-1047, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28084491

ABSTRACT

We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight into the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.

17.
Sci Rep ; 6: 35650, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27774988

ABSTRACT

By mixing glass beads with a curable polymer we create a well-defined cohesive granular medium, held together by solidified, and hence elastic, capillary bridges. This material has a geometry similar to a wet packing of beads, but with an additional control over the elasticity of the bonds holding the particles together. We show that its mechanical response can be varied over several orders of magnitude by adjusting the size and stiffness of the bridges, and the size of the particles. We also investigate its mechanism of failure under unconfined uniaxial compression in combination with in situ x-ray microtomography. We show that a broad linear-elastic regime ends at a limiting strain of about 8%, whatever the stiffness of the agglomerate, which corresponds to the beginning of shear failure. The possibility to finely tune the stiffness, size and shape of this simple material makes it an ideal model system for investigations on, for example, fracturing of porous rocks, seismology, or root growth in cohesive porous media.

18.
Phys Rev Lett ; 116(20): 208001, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27258885

ABSTRACT

We report small-angle x-ray scattering experiments on aqueous dispersions of colloidal silica with a broad monomodal size distribution (polydispersity, 14%; size, 8 nm). Over a range of volume fractions, the silica particles segregate to build first one, then two distinct sets of colloidal crystals. These dispersions thus demonstrate fractional crystallization and multiple-phase (bcc, Laves AB_{2}, liquid) coexistence. Their remarkable ability to build complex crystal structures from a polydisperse population originates from the intermediate-range nature of interparticle forces, and it suggests routes for designing self-assembling colloidal crystals from the bottom up.

19.
Faraday Discuss ; 186: 229-40, 2016.
Article in English | MEDLINE | ID: mdl-26761364

ABSTRACT

A modified version of the Gibbs-ensemble Monte-Carlo method reveals how polydisperse charged colloidal particles can build complex colloidal crystals. It provides general rules that are applicable to this fractionated crystallization that stems from size segregation. It explains the spontaneous formation of complex crystals with very large unit-cells in suspensions of nanoparticles with a broad size distribution.

20.
Soft Matter ; 12(8): 2253-63, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-26762761

ABSTRACT

Cracks in thin layers are influenced by what lies beneath them. From buried craters to crocodile skin, crack patterns are found over an enormous range of length scales. Regardless of absolute size, their substrates can dramatically influence how cracks form, guiding them in some cases, or shielding regions from them in others. Here we investigate how a substrate's shape affects the appearance of cracks above it, by preparing mud cracks over sinusoidally varying surfaces. We find that as the thickness of the cracking layer increases, the observed crack patterns change from wavy to ladder-like to isotropic. Two order parameters are introduced to measure the relative alignment of these crack networks, and, along with Fourier methods, are used to characterise the transitions between crack pattern types. Finally, we explain these results with a model, based on the Griffith criteria of fracture, that identifies the conditions for which straight or wavy cracks will be seen, and predicts how well-ordered the cracks will be. Our metrics and results can be applied to any situation where connected networks of cracks are expected, or found.

SELECTION OF CITATIONS
SEARCH DETAIL
...