Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxicol Mech Methods ; : 1-9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832450

ABSTRACT

The fenugreek plant (Trigonella foenum-graecum) is traditionally known for its anti-diabetic properties owing to its high content of furostanolic saponins, which can synergistically treat many human ailments. Non-enzymatic protein glycation leading to the formation of Advanced Glycation End products (AGE) is a common pathophysiology observed in diabetic or prediabetic individuals, which can initiate the development of neurodegenerative disorders. A potent cellular source of glycation is Methyl Glyoxal, a highly reactive dicarbonyl formed as a glycolytic byproduct. We demonstrate the in vitro glycation arresting potential of Fenfuro®, a novel patented formulation of Fenugreek seed extract with clinically proven anti-diabetic properties, in Methyl-Glyoxal (MGO) adducts of three abundant amyloidogenic cellular proteins, alpha-synuclein, Serum albumin, and Lysozyme. A 0.25% w/v Fenfuro® was able to effectively arrest glycation by more than 50% in all three proteins, as evidenced by AGE fluorescence. Glycation-induced amyloid formation was also arrested by more than 36%, 14% and 15% for BSA, Alpha-synuclein and Lysozyme respectively. An increase in MW by attachment of MGO was also partially prevented by Fenfuro® as confirmed by SDS-PAGE analysis. Glycation resulted in enhanced aggregation of the three proteins as revealed by Native PAGE and Dynamic Light Scattering. However, in the presence of Fenfuro®, aggregation was arrested substantially, and the normal size distribution was restored. The results cumulatively indicated the lesser explored potential of direct inhibition of glycation by fenugreek seed in addition to its proven role in alleviating insulin resistance. Fenfuro® boosts its therapeutic potential as an effective phytotherapeutic to arrest Type 2 diabetes.


Fenfuro® is a novel patented formulation of Fenugreek seed extract with more than 45% furostanolic saponins and anti-diabetic property free from any side effect as established through clinical study.In the present study, the role of Fenfuro® in arresting in vitro AGE formation and glycation-induced amyloid formation has been demonstrated with the help of three amyloidogenic proteins, namely Human Lysozyme, Human alpha-synuclein and Bovine Serum Albumin using Methyl Glyoxal as the glycating agent.A 0.25% (w/v) ethanolic solution of Fenfuro® resulted in more than 50% arrest in glycation with simultaneous prevention of aggregation as demonstrated by native PAGE, DLS and inhibition of development of Thio-T positive amyloid like entities.The studies collectively aim toward the development of a safe therapeutic method for arresting protein glycation through direct physical intervention.

2.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38863744

ABSTRACT

Background: Fenugreek plant (Trigonella foenum-graecum) constitutes a traditionally acclaimed herbal remedy for many human ailments including diabetes, obesity, neurodegenerative diseases, and reproductive disorders. It is also used as an effective anti-oxidative, anti-inflammatory, antibacterial, and anti-fungal agent. The seed of the plant is especially enriched in several bioactive molecules including polyphenols, saponins, alkaloids, and flavonoids and has demonstrated potential to act as an antidiabetic phytotherapeutic. A novel patented formulation (Fenfuro®) was developed in our laboratory from the fenugreek seeds which contained >45% furostanolic saponins (HPLC). Objective: A placebo-controlled clinical compliance study was designed to assess the effects of complementing Fenfuro® on a randomized group of human volunteers on antidiabetic therapy (Metformin and sulphonylurea) in controlling the glycemic index along with simultaneous safety assessment. Study methodology and trial design: In a randomized double-blind, placebo-controlled trial, 42 individuals (21 male and 21 female volunteers) in the treatment group (out of 57 enrolled) and 39 individuals (17 male and 22 female volunteers) in the placebo group (out of 47 enrolled), all on antidiabetic therapy with Metformin/Metformin with sulphonyl urea within the age group of 18-65 years were administered either 1,000 mg (500 mg × 2) (Fenfuro®) capsules or placebo over a period of 12 consecutive weeks. Fasting and postprandial glucose along with glycated hemoglobin were determined as primary outcomes to assess the antidiabetic potential of the formulation. Moreover, in order to evaluate the safety of the formulation, C-peptide and Thyroid Stimulating Hormone (TSH) levels as well as immunohematological parameters were assessed between the treatment and placebo groups at the completion of the study. Results: After 12 weeks of administration, both fasting as well as postprandial serum glucose levels decreased by 38 and 44% respectively in the treatment group. Simultaneously, a significant reduction in glycated hemoglobin by about 34.7% was also noted. The formulation did not have any adverse effect on the study subjects as there was no significant change in C- peptide level and TSH level; liver, kidney, and cardiovascular function was also found to be normal as assessed by serum levels of key immunohematological parameters. No adverse events were reported. Conclusion: This clinical compliance study re-instated and established the safety and efficacy of Fenfuro® as an effective phytotherapeutic to treat hyperglycemia.

3.
J Am Nutr Assoc ; : 1-14, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393321

ABSTRACT

Ocular health has emerged as one of the major issues of global health concern with a decline in quality of life in an aging population, in particular and rise in the number of associated morbidities and mortalities. One of the chief reasons for vision impairment is oxidative damage inflicted to photoreceptors in rods and cone cells by blue light as well as UV radiation. The scenario has been aggravated by unprecedented rise in screen-time during the COVID and post-COVID era. Lutein and Zeaxanthin are oxygenated carotenoids with proven roles in augmentation of ocular health largely by virtue of their antioxidant properties and protective effects against photobleaching of retinal pigments, age-linked macular degeneration, cataract, and retinitis pigmentosa. These molecules are characterized by their characteristic yellow-orange colored pigmentation and are found in significant amounts in vegetables such as corn, spinach, broccoli, carrots as well as fish and eggs. Unique structural signatures including tetraterpenoid skeleton with extensive conjugation and the presence of hydroxyl groups at the end rings have made these molecules evolutionarily adapted to localize in the membrane of the photoreceptor cells and prevent their free radical induced peroxidation. Apart from the benefits imparted to ocular health, lutein and zeaxanthin are also known to improve cognitive function, cardiovascular physiology, and arrest the development of malignancy. Although abundant in many natural sources, bioavailability of these compounds is low owing to their long aliphatic backbones. Under the circumstances, there has been a concerted effort to develop vegetable oil-based carriers such as lipid nano-emulsions for therapeutic administration of carotenoids. This review presents a comprehensive update of the therapeutic potential of the carotenoids along with the challenges in achieving an optimized delivery tool for maximizing their effectiveness inside the body.


Lutein and zeaxanthin are the two most abundant natural xanthophylls (oxygenated carotenoids) with a linear C40 tetraterpene/isoprenoid lycopene-based backbone.Presence of extensive conjugation (more than 10 double bonds) enable these molecules to act as accessory light harvesting pigments apart from chlorophyll.More importantly, the xanthophylls prevent photobleaching of the pigments and proteins in the Light Harvesting Complex (LHC) by sequestering the excess unutilized blue light and preventing triplet chlorophyll associated formation of Reactive Oxygen Species.In human eye, lutein, zeaxanthin along with mesozeaxanthin constitute the three macular pigments forming the so called "yellow spot" of the macula and are implicated in maintaining the redox balance, homeostasis and normal physiology of the eyes.However, unlike plants, xanthophylls must be acquired from dietary sources such as colored leafy vegetables and egg yolk.Increase in the number of eye diseases in the aging population coupled with insufficient bioavailability of xanthophylls has mandated the industrial production of supplements enriched in xanthophylls.The bioavailability and delivery of xanthophylls can be significantly enhanced by suspension in a blend of extra-virgin olive oil and other vegetable oils.

4.
J Am Nutr Assoc ; 43(4): 315-325, 2024.
Article in English | MEDLINE | ID: mdl-38227783

ABSTRACT

OBJECTIVE: Obesity and overweight are challenging health problems of the millennium that lead to diabetes, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and atherosclerosis. Green coffee bean exhibited significant promise in healthy weight management, potentiating glucose-insulin sensitization and supporting liver health. The safety and efficacy of a novel, patented water-soluble green coffee bean extract (GCB70® enriched in 70% total chlorogenic acid and <1% caffeine) was investigated in 105 participants for 12 consecutive weeks. An institutional review board and Drugs Controller General (India) (DCGI) approvals were obtained, and the study was registered at ClinicalTrials.gov. METHOD: Body weight, body mass index (BMI), waist circumference, lipid profile, plasma leptin, glycosylated hemoglobin (HbA1c), and total blood chemistry were assessed over a period of 12 weeks of treatment. Safety was affirmed. RESULTS: GCB70 (500 mg BID) supplementation significantly reduced body weight (approximately 6%; p = 0.000**) in approximately 97% of the study population. About a 5.65% statistically significant reduction (p = 0.000**) in BMI was observed in 96% of the study volunteers. Waist circumference was significantly reduced by 6.77% and 6.62% in 98% of the male and female participants, respectively. Plasma leptin levels decreased by 13.6% in 99% of the study population as compared to the baseline value. Upon completion of 12 weeks' treatment, fasting glucose levels decreased by 13.05% (p = 0.000**) in 79% of the study population. There was a statistically significant decrease in HbA1c levels in both male and female participants (p = 0.000**), while 86.7% of the study participants showed a statistically significant decrease in thyroid-stimulating hormone (TSH) levels (p = 0.000**). The mean decrease in TSH levels on completion of the treatment was 14.07% in the study population as compared to baseline levels. Total blood chemistry analysis exhibited broad-spectrum safety. CONCLUSIONS: This investigation demonstrated that GCB70 is safe and efficacious in healthy weight management.


Subject(s)
Body Mass Index , Chlorogenic Acid , Glycated Hemoglobin , Leptin , Overweight , Plant Extracts , Waist Circumference , Adult , Female , Humans , Male , Middle Aged , Young Adult , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Coffea/chemistry , Coffee/chemistry , Dietary Supplements , Glycated Hemoglobin/analysis , India , Leptin/blood , Overweight/drug therapy , Overweight/blood , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Waist Circumference/drug effects , Weight Loss/drug effects
5.
J Am Nutr Assoc ; 43(2): 147-156, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37459747

ABSTRACT

BACKGROUND: Trigonella foenum-graecum (Fenugreek) is an extensively researched phytotherapeutic for the management of Type 2 diabetes without any associated side effects. The major anti-diabetic bioactive constituents present in the plant are furostanolic saponins, which are more abundantly available in the seed of the plant. However, the bioavailability of these components depends on the method of extraction and hence formulation of the phytotherapeutic constitutes a critical step for its success. OBJECTIVE: The present study reports the efficacy of a novel, patented fenugreek seed extract, Fenfuro®, containing significant amount of furostanolic saponins, in an open-labelled, two-armed, single centric study on a group of 204 patients with Type 2 diabetes mellitus over a period of twelve consecutive weeks. RESULTS: Administration of Fenfuro® in the dosage of 500 mg twice daily along with metformin and/or sulfonylurea-based prescribed antidiabetic drug resulted in a reduction of post-prandial glucose by more than 33% along with significant reduction in fasting glucose, both of which were greater than what resulted for the patient group receiving only Metformin and/or Sulfonylurea therapy. Fenfuro® also resulted in reduction in mean baseline HOMA index from 4.27 to 3.765, indicating restoration of insulin sensitivity which was also supported by a significant decrease in serum insulin levels by >10% as well as slight reduction in the levels of C-peptide. However, in the case of the Metformin and/or Sulfonylurea group, insulin levels were found to increase by more than 14%, which clearly indicated that drug-induced suppression of glucose levels instead of restoration of glucose homeostasis. Administration of the formulation was also found to be free from any adverse side effects as there were no changes in hematological profile, liver function and renal function. CONCLUSION: The study demonstrated the promising potential of this novel phytotherapeutic, Fenfuro®, in long-term holistic management of type-2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulins , Metformin , Saponins , Trigonella , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucose/therapeutic use , Insulins/therapeutic use , Metformin/therapeutic use , Plant Extracts/pharmacology , Saponins/therapeutic use , Sulfonylurea Compounds/therapeutic use , Double-Blind Method
6.
J Am Nutr Assoc ; 43(2): 115-130, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37410676

ABSTRACT

Withania somnifera (L.) Dunal, abundant in the Indian subcontinent as Ashwagandha or winter cherry, is a herb of unprecedented therapeutic value. The number of ailments for which crude Ashwagandha extract can be used as a preventive or curative is practically limitless; and this explains why its use has been in vogue in ancient Ayurveda since at-least about four thousand years. The therapeutic potential of Ashwagandha mainly owes from its reservoir of alkaloids (isopelletierine, anaferine), steroidal lactones (withanolides) and saponins with an extra acyl group (sitoindoside VII and VIII). Withaferin A is an exceptionally potent withanolide which is found in high concentrations in W. somnifera plant extracts. The high reactivity of Withaferin A owes to the presence of a C-28 ergostane network with multiple sites of unsaturation and differential oxygenation. It interacts with the effectors of multiple signaling pathways involved in inflammatory response, oxidative stress response, cell cycle regulation and synaptic transmission and has been found to be significantly effective in inducing programmed cell death in cancer cells, restoring cognitive health, managing diabetes, alleviating metabolic disorders, and rejuvenating the overall body homeostasis. Additionally, recent studies suggest that Withaferin A (WA) has the potential to prevent viral endocytosis by sequestering TMPRSS2, the host transmembrane protease, without altering ACE-2 expression. The scope of performing subtle structural modifications in this multi-ring compound is believed to further expand its pharmacotherapeutic horizon. Very recently, a novel, heavy metal and pesticide free formulation of Ashwagandha whole herb extract, with a significant amount of WA, termed W-ferinAmax Ashwagandha, has been developed. The present review attempts to fathom the present and future of this wonder molecule with comprehensive discussion on its therapeutic potential, safety and toxicity.Key teaching pointsWithania somnifera (L.) Dunal is a medicinal plant with versatile therapeutic values.The therapeutic potential of the plant owes to the presence of withanolides such as Withaferin A.Withaferin A is a C-28 ergostane based triterpenoid with multiple reactive sites of therapeutic potential.It is effective against a broad spectrum of ailments including neurodegenerative disorders, cancer, inflammatory and oxidative stress disorders and it also promotes cardiovascular and sexual health.W-ferinAmax Ashwagandha, is a heavy metal and pesticide free Ashwagandha whole herb extract based formulation with significant amount of Withaferin A.


Subject(s)
Metals, Heavy , Withania , Withanolides , Withanolides/pharmacology , Withania/chemistry , Lactones/metabolism , Plant Extracts/pharmacology , Steroids/metabolism , Metals, Heavy/metabolism
7.
Toxicol Mech Methods ; 33(8): 698-706, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37533233

ABSTRACT

Withania somnifera (L.) Dunal, popularly known as Ashwagandha or Indian ginseng, is well acclaimed for its health-enhancing effects, including its potent immunomodulatory, anti-inflammatory, neuroprotective, and anti-tumorigenic properties. The prime biological effectors of these attributes are a diverse group of ergostane-based steroidal lactones termed withanolides. Withanones and withanosides are distributed differentially across the plant body, whereas withanolides and withanones are known to be more abundant in leaves, while withanosides are found exclusively in the roots of the plants. Standardized W. somnifera extract is Generally Recognized as Safe (GRAS)-affirmed, however, moderate to severe toxic manifestations may occur at high dosages. Withaferin A, which also happens to be the primary bioactive ingredient for the effectiveness of this plant. There have been contrasting reports regarding the distribution of withaferin A in W. somnifera. While most reports state that the roots of the plant have the highest concentrations of this phytochemical, several others have indicated that leaves can accumulate withaferin A in proportionately higher amounts. A comprehensive survey of the available reports suggests that the biological effects of Ashwagandha are grossly synergistic in nature, with many withanolides together mediating the desired physiological effect. In addition, an assorted formulation of withanolides can also neutralize the toxic effects (if any) associated with withaferin A. This mini-review presents a fresh take on the recent developments regarding the safety and toxicity of the plant, along with a critical assessment of the use of roots against leaves as well as whole plants to develop therapeutic formulations. Going by the currently available scientific evidence, it is safe to infer that the use of whole plant formulations instead of exclusively root or leaf recipes may present the best possible option for further exploration of therapeutic benefits from this novel medicinal plant.HighlightsTherapeutic potential of withanolides owes to the presence of α,ß unsaturated ketone which binds to amines, alcohols, and esters and 5ß, 6ß epoxy group which react with side chain thiols of proteins.At concentrations above NOAEL (no observed adverse effect level), the same mechanisms contribute towards toxicity of the molecule.Although withanosides are found exclusively in roots, whole plants have higher contents of withanones and withanolides.Whole plant-based formulations have other metabolites which can nullify the toxicity associated with roots.Extracts made from whole plants, therefore can holistically impart all therapeutic benefits as well as mitigate toxicity.


Subject(s)
Withania , Withanolides , Withanolides/toxicity , Withanolides/chemistry , Withanolides/metabolism , Withania/chemistry , Withania/metabolism , Plant Extracts/toxicity , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Roots/metabolism
8.
J Am Nutr Assoc ; 42(7): 691-699, 2023.
Article in English | MEDLINE | ID: mdl-36441141

ABSTRACT

INTRODUCTION: Polycystic Ovary Syndrome (PCOS) is an endocrine disorder which accounts for infertility around the world. The disease is characterized by elevated secretion of androgens in the women which results in enlargement of ovaries with accumulation of fluid filled cysts, irregular menstrual cycles, and hirsutism. This study reports the efficacy of a patented, standardized Trigonella foenum-graecum extract (Furocyst®) as an effective phytotherapeutic for effective management of PCOS. OBJECTIVE: This randomized one-arm study assessed the efficacy of Furocyst® in 107 female volunteers over a period of 12 consecutive weeks. METHOD: Following approvals of the Institutional Ethical Committee and clinicaltrials.gov, 107 female volunteers (age: 18-45 years) were recruited. Subjects consumed Furocyst® capsules (1,000 mg/day p.o.) over a period of 12 consecutive weeks. Physical (Sonographic scan, Hirsutism Score, Menstrual cycle, Body Weight, BMI, Height, Waist Circumference and Blood Pressure) and biochemical parameters (LH/FSH ratio, TSH, Prolactin, Fasting insulin, Fasting Glucose, triglyceride, cholesterol, HOMA Index, free and total testosterone, 2-hour GTT, DHEAS) were assessed at the beginning of the study as well as at intervals of 4 weeks till 12 weeks to determine the efficacy of Furocyst® on PCOS induced damage on reproductive and endocrine system. RESULTS: Furocyst® treatment induced >40% reduction of mean cyst sizes in both ovaries with corresponding reduction of in ovarian volumes. LH:FSH ratio was also significantly improved with corresponding reduction in total testosterone and prolactin levels. As a result of improvement in endocrine function, menstrual cycle became regular in the subjects. Furocyst® also reduced the severity of other associated ailments such as insulin resistance, dyslipidemia, and improved liver function significantly. CONCLUSIONS: This study reinstated the efficacy of Furocyst® as a safe phytotherapeutic to reverse the effects of PCOS inflicted damage on the female reproductive system without any adverse events.

9.
J Am Nutr Assoc ; 42(7): 651-659, 2023.
Article in English | MEDLINE | ID: mdl-36219198

ABSTRACT

INTRODUCTION: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenemia, a quite common heterogenous endocrine/hormonal disorder, and accompanied by elevated androgen level, menstrual irregularity, and hirsutism. The consequences include infertility or miscarriage. It is a challenging problem to the physicians. In a one-arm, non-randomized preliminary investigation in fifty premenopausal women, we demonstrated the efficacy of Furocyst®, a patented, standardized Trigonella foenum-graecum extract, in ameliorating the symptoms of PCOS over a period of 90 consecutive days. OBJECTIVE: In the present study, a double-blind, two-arm, single-center, randomized, comparative study was conducted to assess the efficacy of Furocyst® (2 capsules of 500 mg/day) in 208 pre-menopausal women diagnosed with PCOS. METHODS: Ethical committee approval was obtained. A total of 208 subjects (placebo = 95; Furocyst® = 113; age:18-45 years, BMI < 42 kg/m2) completed the investigation. The comparative efficacy of placebo and Furocyst® was assessed on the number of cysts, ovarian volume, hirsutism, LH:FSH ratio, titer of TSH, SHBG, prolactin and free testosterone. Key clinical parameters such as fasting blood glucose levels, HOMA Index, cholesterol, LDL, and triglyceride levels, as well as total blood chemistry were also investigated. RESULTS: Furocyst® supplementation significantly reduced the number of cysts, ovarian volume, and hirsutism levels, as well as normalized the menstrual cycle in Furocyst®-treated subjects as compared to placebo group. Furocyst® significantly reduced luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels, and thyroid stimulating hormone (TSH) levels, and reduced the prolactin and SHBG levels. Furocyst® significantly reduced the fasting blood glucose levels, HOMA Index, cholesterol, LDL, and triglyceride levels as compared to the placebo group, while the free testosterone levels were significantly decreased in the Furocyst® group. CONCLUSION: The studies collectively demonstrated the efficacy of Furocyst® as a safe, natural phytochemical-based formulation to alleviate the symptoms of PCOS. No significant adverse events were observed.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119221, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33257246

ABSTRACT

Exploring a new multi-responsive pyranone chemosensor capable of sensing copper ions specifically and selectively through colorimetric, UV-Vis absorption and fluorescence methods is of great importance. In this piece of work, a novel pyranone based Schiff base ligand 4-Hydroxy-6-methyl-3-[1-(2-morpholin-4-yl-ethylimino)-ethyl]-pyran-2-one (DM) was synthesized by the condensation of dehydroacetic acid and 4-(2-aminoethyl) morpholine. The structural determination of ligand DM was executed using distinct spectral techniques i.e.,1H NMR, 13C NMR, FT-IR and HR-MS techniques. The reported Schiff base DM showed an immediate colorimetric change from pale yellow to colorless accompanied by a strong change in the UV-Vis absorption band onto the addition of Cu (II) ions. This metal ligand chelation leads a decrease in ICT process. Also the decrease in fluorescence emission intensity of Schiff base DM with Cu (II) ions addition showed its turn-off behavior towards copper ions. Further absorption/ emission titration studies, Job's plot, HR-MS and 1H NMR titration data designated 2:1 stoichiometric ratio between DM and Cu (II) ions respectively. Density functional theory studies were also performed to authenticate the binding mechanism theoretically. The sensitivity of Schiff base DM towards Cu (II) ions was applicable at every pH conditions and at the same time DM exhibited selectivity towards Cu (II) ions with a negligible interference of other metal ions. DM showed a detection limit of 7.7 nM towards copper ions via fluorescence emission studies. The best part about DM is that it has good stability but showed an instant chemical reversibility when titrated with EDTA solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...