Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 326(1): E14-E28, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37938177

ABSTRACT

Regular exercise elicits adaptations in glucose and lipid metabolism that allow the body to meet energy demands of subsequent exercise bouts more effectively and mitigate metabolic diseases including fatty liver. Energy discharged during the acute exercise bouts that comprise exercise training may be a catalyst for liver adaptations. During acute exercise, liver glycogenolysis and gluconeogenesis are accelerated to supply glucose to working muscle. Lower liver energy state imposed by gluconeogenesis and related pathways activates AMP-activated protein kinase (AMPK), which conserves ATP partly by promoting lipid oxidation. This study tested the hypothesis that AMPK is necessary for liver glucose and lipid adaptations to training. Liver-specific AMPKα1α2 knockout (AMPKα1α2fl/fl+AlbCre) mice and littermate controls (AMPKα1α2fl/fl) completed sedentary and exercise training protocols. Liver nutrient fluxes were quantified at rest or during acute exercise following training. Liver metabolites and molecular regulators of metabolism were assessed. Training increased liver glycogen in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. The inability to increase glycogen led to lower glycogenolysis, glucose production, and circulating glucose during acute exercise in trained AMPKα1α2fl/fl+AlbCre mice. Deletion of AMPKα1α2 attenuated training-induced declines in liver diacylglycerides. In particular, training lowered the concentration of unsaturated and elongated fatty acids comprising diacylglycerides in AMPKα1α2fl/fl mice, but not in AMPKα1α2fl/fl+AlbCre mice. Training increased liver triacylglycerides and the desaturation and elongation of fatty acids in triacylglycerides of AMPKα1α2fl/fl+AlbCre mice. These lipid responses were independent of differences in tricarboxylic acid cycle fluxes. In conclusion, AMPK is required for liver training adaptations that are critical to glucose and lipid metabolism.NEW & NOTEWORTHY This study shows that the energy sensor and transducer, AMP-activated protein kinase (AMPK), is necessary for an exercise training-induced: 1) increase in liver glycogen that is necessary for accelerated glycogenolysis during exercise, 2) decrease in liver glycerolipids independent of tricarboxylic acid (TCA) cycle flux, and 3) decline in the desaturation and elongation of fatty acids comprising liver diacylglycerides. The mechanisms defined in these studies have implications for use of regular exercise or AMPK-activators in patients with fatty liver.


Subject(s)
AMP-Activated Protein Kinases , Fatty Liver , Humans , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Liver Glycogen , Liver/metabolism , Glucose/metabolism , Fatty Liver/metabolism , Fatty Acids/metabolism
2.
Diabetes ; 69(8): 1636-1649, 2020 08.
Article in English | MEDLINE | ID: mdl-32439824

ABSTRACT

Insulin resistance due to overnutrition places a burden on energy-producing pathways in skeletal muscle (SkM). Nevertheless, energy state is not compromised. The hypothesis that the energy sensor AMPK is necessary to offset the metabolic burden of overnutrition was tested using chow-fed and high-fat (HF)-fed SkM-specific AMPKα1α2 knockout (mdKO) mice and AMPKα1α2lox/lox littermates (wild-type [WT]). Lean mdKO and WT mice were phenotypically similar. HF-fed mice were equally obese and maintained lean mass regardless of genotype. Results did not support the hypothesis that AMPK is protective during overnutrition. Paradoxically, mdKO mice were more insulin sensitive. Insulin-stimulated SkM glucose uptake was approximately twofold greater in mdKO mice in vivo. Furthermore, insulin signaling, SkM GLUT4 translocation, hexokinase activity, and glycolysis were increased. AMPK and insulin signaling intersect at mammalian target of rapamycin (mTOR), a critical node for cell proliferation and survival. Basal mTOR activation was reduced by 50% in HF-fed mdKO mice, but was normalized by insulin stimulation. Mitochondrial function was impaired in mdKO mice, but energy charge was preserved by AMP deamination. Results show a surprising reciprocity between SkM AMPK signaling and insulin action that manifests with diet-induced obesity, as insulin action is preserved to protect fundamental energetic processes in the muscle.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Animals , Body Composition/physiology , Body Weight/physiology , Glucose Transporter Type 4/metabolism , Hexokinase/metabolism , Humans , Insulin Resistance/physiology , Mice , Mice, Knockout , Mice, Obese , Signal Transduction/genetics , Signal Transduction/physiology
3.
Mol Metab ; 23: 1-13, 2019 05.
Article in English | MEDLINE | ID: mdl-30850319

ABSTRACT

OBJECTIVE: The loss of liver glycine N-methyltransferase (GNMT) promotes liver steatosis and the transition to hepatocellular carcinoma (HCC). Previous work showed endogenous glucose production is reduced in GNMT-null mice with gluconeogenic precursors being used in alternative biosynthetic pathways that utilize methyl donors and are linked to tumorigenesis. This metabolic programming occurs before the appearance of HCC in GNMT-null mice. The metabolic physiology that sustains liver tumor formation in GNMT-null mice is unknown. The studies presented here tested the hypothesis that nutrient flux pivots from glucose production to pathways that incorporate and metabolize methyl groups in GNMT-null mice with HCC. METHODS: 2H/13C metabolic flux analysis was performed in conscious, unrestrained mice lacking GNMT to quantify glucose formation and associated nutrient fluxes. Molecular analyses of livers from mice lacking GNMT including metabolomic, immunoblotting, and immunochemistry were completed to fully interpret the nutrient fluxes. RESULTS: GNMT knockout (KO) mice showed lower blood glucose that was accompanied by a reduction in liver glycogenolysis and gluconeogenesis. NAD+ was lower and the NAD(P)H-to-NAD(P)+ ratio was higher in livers of KO mice. Indices of NAD+ synthesis and catabolism, pentose phosphate pathway flux, and glutathione synthesis were dysregulated in KO mice. CONCLUSION: Glucose precursor flux away from glucose formation towards pathways that regulate redox status increase in the liver. Moreover, synthesis and scavenging of NAD+ are both impaired resulting in reduced concentrations. This metabolic program blunts an increase in methyl donor availability, however, biosynthetic pathways underlying HCC are activated.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Gluconeogenesis , Glycine N-Methyltransferase/metabolism , Homeostasis , Liver Neoplasms/metabolism , Oxidation-Reduction , Animals , DNA Methylation , Fatty Liver/metabolism , Gene Knockout Techniques , Glucose/metabolism , Glycine N-Methyltransferase/genetics , Liver/metabolism , Male , Methionine/metabolism , Mice , Mice, Knockout , NAD/metabolism
4.
Diabetes ; 64(9): 3081-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25948682

ABSTRACT

Protein hyperacetylation is associated with glucose intolerance and insulin resistance, suggesting that the enzymes regulating the acetylome play a role in this pathological process. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has been linked to energy homeostasis. Thus, it is hypothesized that the dysregulation of the mitochondrial acetylation state, via genetic deletion of SIRT3, will amplify the deleterious effects of a high-fat diet (HFD). Hyperinsulinemic-euglycemic clamp experiments show, for the first time, that mice lacking SIRT3 exhibit increased insulin resistance due to defects in skeletal muscle glucose uptake. Permeabilized muscle fibers from HFD-fed SIRT3 knockout (KO) mice showed that tricarboxylic acid cycle substrate-based respiration is decreased while fatty acid-based respiration is increased, reflecting a fuel switch from glucose to fatty acids. Consistent with reduced muscle glucose uptake, hexokinase II (HKII) binding to the mitochondria is decreased in muscle from HFD-fed SIRT3 KO mice, suggesting decreased HKII activity. These results show that the absence of SIRT3 in HFD-fed mice causes profound impairments in insulin-stimulated muscle glucose uptake, creating an increased reliance on fatty acids. Insulin action was not impaired in the lean SIRT3 KO mice. This suggests that SIRT3 protects against dietary insulin resistance by facilitating glucose disposal and mitochondrial function.


Subject(s)
Diet, High-Fat , Glucose Intolerance/genetics , Hexokinase/metabolism , Insulin Resistance/genetics , Insulin/metabolism , Mitochondria/metabolism , Muscle Fibers, Skeletal/metabolism , Sirtuin 3/genetics , Acetylation , Animals , Glucose Clamp Technique , Glucose Intolerance/metabolism , Insulin Resistance/physiology , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Sirtuin 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...