Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 16(6)2024 06 04.
Article in English | MEDLINE | ID: mdl-38922665

ABSTRACT

Molecular studies of animal regeneration typically focus on conserved genes and signaling pathways that underlie morphogenesis. To date, a holistic analysis of gene expression across animals has not been attempted, as it presents a suite of problems related to differences in experimental design and gene homology. By combining orthology analyses with a novel statistical method for testing gene enrichment across large data sets, we are able to test whether tissue regeneration across animals shares transcriptional regulation. We applied this method to a meta-analysis of six publicly available RNA-Seq data sets from diverse examples of animal regeneration. We recovered 160 conserved orthologous gene clusters, which are enriched in structural genes as opposed to those regulating morphogenesis. A breakdown of gene presence/absence provides limited support for the conservation of pathways typically implicated in regeneration, such as Wnt signaling and cell pluripotency pathways. Such pathways are only conserved if we permit large amounts of paralog switching through evolution. Overall, our analysis does not support the hypothesis that a shared set of ancestral genes underlie regeneration mechanisms in animals. After applying the same method to heat shock studies and getting similar results, we raise broader questions about the ability of comparative RNA-Seq to reveal conserved gene pathways across deep evolutionary relationships.


Subject(s)
RNA-Seq , Regeneration , Animals , Regeneration/genetics , Evolution, Molecular , Sequence Analysis, RNA
2.
PLoS One ; 19(4): e0298002, 2024.
Article in English | MEDLINE | ID: mdl-38635587

ABSTRACT

The impact of microbiome in animal physiology is well appreciated, but characterization of animal-microbe symbiosis in marine environments remains a growing need. This study characterizes the microbial communities associated with the moon jellyfish Aurelia coerulea, first isolated from the East Pacific Ocean and has since been utilized as an experimental system. We find that the microbiome of this Pacific Aurelia culture is dominated by two taxa, a Mollicutes and Rickettsiales. The microbiome is stable across life stages, although composition varies. Mining the host sequencing data, we assembled the bacterial metagenome-assembled genomes (MAGs). The bacterial MAGs are highly reduced, and predict a high metabolic dependence on the host. Analysis using multiple metrics suggest that both bacteria are likely new species. We therefore propose the names Ca. Mariplasma lunae (Mollicutes) and Ca. Marinirickettsia aquamalans (Rickettsiales). Finally, comparison with studies of Aurelia from other geographical populations suggests the association with Ca. Mariplasma lunae occurs in Aurelia from multiple geographical locations. The low-diversity microbiome of Aurelia provides a relatively simple system to study host-microbe interactions.


Subject(s)
Microbiota , Scyphozoa , Animals , Scyphozoa/physiology , Metagenome , Bacteria/genetics , Pacific Ocean
4.
Elife ; 122023 Jun 22.
Article in English | MEDLINE | ID: mdl-37347515

ABSTRACT

Previously we reported evidence that a regenerative response in the appendages of moon jellyfish, fruit flies, and mice can be promoted by nutrient modulation (Abrams et al., 2021). Sustar and Tuthill subsequently reported that they had not been able to reproduce the induced regenerative response in flies (Sustar and Tuthill, 2023). Here we discuss that differences in the amputation method, treatment concentrations, age of the animals, and stress management explain why they did not observe a regenerative response in flies. Typically, 30-50% of treated flies showed response in our assay.


Subject(s)
Drosophila , Scyphozoa , Animals , Mice , Scyphozoa/physiology , Nutrients
5.
Elife ; 102021 12 07.
Article in English | MEDLINE | ID: mdl-34874003

ABSTRACT

Can limb regeneration be induced? Few have pursued this question, and an evolutionarily conserved strategy has yet to emerge. This study reports a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.


The ability of animals to replace damaged or lost tissue (or 'regenerate') is a sliding scale, with some animals able to regenerate whole limbs, while others can only scar. But why some animals can regenerate while others have more limited capabilities has puzzled the scientific community for many years. The likes of Charles Darwin and August Weismann suggested regeneration only evolves in a particular organ. In contrast, Thomas Morgan suggested that all animals are equipped with the tools to regenerate but differ in whether they are able to activate these processes. If the latter were true, it could be possible to 'switch on' regeneration. Animals that keep growing throughout their life and do not regulate their body temperatures are more likely to be able to regenerate. But what do growth and temperature regulation have in common? Both are highly energy-intensive, with temperature regulation potentially diverting energy from other processes. A question therefore presents itself: could limb regeneration be switched on by supplying animals with more energy, either in the form of nutrients like sugars or amino acids, or by giving them growth hormones such as insulin? Abrams, Tan, Li et al. tested this hypothesis by amputating the limbs of jellyfish, flies and mice, and then supplementing their diet with sucrose (a sugar), leucine (an amino acid) and/or insulin for eight weeks while they healed. Typically, jellyfish rearrange their remaining arms when one is lost, while fruit flies are not known to regenerate limbs. House mice are usually only able to regenerate the very tip of an amputated digit. But in Abrams, Tan, Li et al.'s experiments, leucine and insulin supplements stimulated limb regeneration in jellyfish and adult fruit flies, and leucine and sucrose supplements allowed mice to regenerate digits from below the second knuckle. Although regeneration was not observed in all animals, these results demonstrate that regeneration can be induced, and that it can be done relatively easily, by feeding animals extra sugar and amino acids. These findings highlight increasing the energy supplies of different animals by manipulating their diets while they are healing from an amputated limb can aid in regeneration. This could in the future pave the way for new therapeutic approaches to tissue and organ regeneration.


Subject(s)
Amputation, Surgical/methods , Drosophila/physiology , Extremities/physiology , Hindlimb/physiology , Regeneration , Scyphozoa/physiology , Animals , Mice
6.
Elife ; 72018 09 19.
Article in English | MEDLINE | ID: mdl-30222104

ABSTRACT

One challenge in biology is to make sense of the complexity of biological networks. A good system to approach this is signaling pathways, whose well-characterized molecular details allow us to relate the internal processes of each pathway to their input-output behavior. In this study, we analyzed mathematical models of three metazoan signaling pathways: the canonical Wnt, MAPK/ERK, and Tgfß pathways. We find an unexpected convergence: the three pathways behave in some physiological contexts as linear signal transmitters. Testing the results experimentally, we present direct measurements of linear input-output behavior in the Wnt and ERK pathways. Analytics from each model further reveal that linearity arises through different means in each pathway, which we tested experimentally in the Wnt and ERK pathways. Linearity is a desired property in engineering where it facilitates fidelity and superposition in signal transmission. Our findings illustrate how cells tune different complex networks to converge on the same behavior.


Subject(s)
Cell Physiological Phenomena , Models, Theoretical , Protein Interaction Maps , Signal Transduction , Animals
7.
Science ; 361(6403): 643-644, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30115793

Subject(s)
Signal Transduction
8.
Curr Opin Biotechnol ; 54: 72-79, 2018 12.
Article in English | MEDLINE | ID: mdl-29501949

ABSTRACT

Motifs, circuits, and networks are core conceptual elements in modern systems and synthetic biology. While there are still undoubtedly more fascinating computations to discover at network level, there are also rich computations that we are only beginning to uncover within the diverse molecules that constitute the networks. Here we explore some work, both new and old, that showcases the incredible computational capacity of seemingly simple molecular mechanisms. A more sophisticated understanding of computations at the molecular level will inspire the development of a more nuanced toolbox for future biological engineering.


Subject(s)
Synthetic Biology/methods , Allosteric Regulation , Enzymes/metabolism , Humans , Kinetics , RNA/metabolism
9.
Curr Opin Syst Biol ; 1: 80-83, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28983520

ABSTRACT

One driving motivation of systems biology is the search for general principles that govern the design of biological systems. But questions often arise as to what kind of general principles biology could have. Concepts from engineering such as robustness and modularity are indeed becoming a regular way of describing biological systems. Another source of potential general principles is the emerging similarities found in processes across biological hierarchies. In this piece, I describe several emerging cross-hierarchy similarities. Identification of more cross-hierarchy principles, and understanding the implications these convergence have on the construction of biological systems, I believe, present exciting challenges for systems biology in the decades to come.

10.
Curr Biol ; 27(19): 2984-2990.e3, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28943083

ABSTRACT

Do all animals sleep? Sleep has been observed in many vertebrates, and there is a growing body of evidence for sleep-like states in arthropods and nematodes [1-5]. Here we show that sleep is also present in Cnidaria [6-8], an earlier-branching metazoan lineage. Cnidaria and Ctenophora are the first metazoan phyla to evolve tissue-level organization and differentiated cell types, such as neurons and muscle [9-15]. In Cnidaria, neurons are organized into a non-centralized radially symmetric nerve net [11, 13, 15-17] that nevertheless shares fundamental properties with the vertebrate nervous system: action potentials, synaptic transmission, neuropeptides, and neurotransmitters [15-20]. It was reported that cnidarian soft corals [21] and box jellyfish [22, 23] exhibit periods of quiescence, a pre-requisite for sleep-like states, prompting us to ask whether sleep is present in Cnidaria. Within Cnidaria, the upside-down jellyfish Cassiopea spp. displays a quantifiable pulsing behavior, allowing us to perform long-term behavioral tracking. Monitoring of Cassiopea pulsing activity for consecutive days and nights revealed behavioral quiescence at night that is rapidly reversible, as well as a delayed response to stimulation in the quiescent state. When deprived of nighttime quiescence, Cassiopea exhibited decreased activity and reduced responsiveness to a sensory stimulus during the subsequent day, consistent with homeostatic regulation of the quiescent state. Together, these results indicate that Cassiopea has a sleep-like state, supporting the hypothesis that sleep arose early in the metazoan lineage, prior to the emergence of a centralized nervous system.


Subject(s)
Scyphozoa/physiology , Sleep , Animals , Biological Evolution
11.
Curr Biol ; 27(15): 2357-2364.e5, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28756947

ABSTRACT

The canonical Wnt pathway regulates numerous fundamental processes throughout development and adult physiology and is often disrupted in diseases [1-4]. Signal in the pathway is transduced by ß-catenin, which in complex with Tcf/Lef regulates transcription. Despite the many processes that the Wnt pathway governs, ß-catenin acts primarily on a single cis element in the DNA, the Wnt-responsive element (WRE), at times potentiated by a nearby Helper site. In this study, working with Xenopus, mouse, and human systems, we identified a cis element, distinct from WRE, upon which ß-catenin and Tcf act. The element is 11 bp long, hundreds of bases apart from the WRE, and exhibits a suppressive effect. In Xenopus patterning, loss of the 11-bp negative regulatory elements (11-bp NREs) broadened dorsal expression of siamois. In mouse embryonic stem cells, genomic deletion of the 11-bp NREs in the promoter elevated Brachyury expression. This reveals a previously unappreciated mechanism within the Wnt pathway, where gene response is not only driven by WREs but also tuned by 11-bp NREs. Using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP), we found evidence for the NREs binding to ß-catenin and Tcf-suggesting a dual action by ß-catenin as a signal and a feedforward sensor. Analyzing ß-catenin ChIP sequencing in human cells, we found the 11-bp NREs co-localizing with the WRE in 45%-71% of the peaks, suggesting a widespread role for the mechanism. This study presents an example of a more complex cis regulation by a signaling pathway, where a signal is processed through two distinct cis elements in a gene circuitry.


Subject(s)
T Cell Transcription Factor 1/genetics , Wnt Signaling Pathway , beta Catenin/genetics , Animals , Female , Humans , Male , Mice , T Cell Transcription Factor 1/metabolism , Xenopus laevis , beta Catenin/metabolism
12.
Proc Natl Acad Sci U S A ; 114(14): E2975-E2982, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28320972

ABSTRACT

How signaling pathways function reliably despite cellular variation remains a question in many systems. In the transforming growth factor-ß (Tgf-ß) pathway, exposure to ligand stimulates nuclear localization of Smad proteins, which then regulate target gene expression. Examining Smad3 dynamics in live reporter cells, we found evidence for fold-change detection. Although the level of nuclear Smad3 varied across cells, the fold change in the level of nuclear Smad3 was a more precise outcome of ligand stimulation. The precision of the fold-change response was observed throughout the signaling duration and across Tgf-ß doses, and significantly increased the information transduction capacity of the pathway. Using single-molecule FISH, we further observed that expression of Smad3 target genes (ctgf, snai1, and wnt9a) correlated more strongly with the fold change, rather than the level, of nuclear Smad3. These findings suggest that some target genes sense Smad3 level relative to background, as a strategy for coping with cellular noise.


Subject(s)
Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Cell Line , Cell Nucleus/metabolism , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation , Humans , In Situ Hybridization, Fluorescence , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Single-Cell Analysis/methods , Smad Proteins/genetics , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
13.
Proc Natl Acad Sci U S A ; 113(30): E4423-30, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27410043

ABSTRACT

Many sensory systems, from vision and hearing in animals to signal transduction in cells, respond to fold changes in signal relative to background. Responding to fold change requires that the system senses signal on a logarithmic scale, responding identically to a change in signal level from 1 to 3, or from 10 to 30. It is an ongoing search in the field to understand the ways in which a logarithmic sensor can be implemented at the molecular level. In this work, we present evidence that logarithmic sensing can be implemented with a single protein, by means of allosteric regulation. Specifically, we find that mathematical models show that allosteric proteins can respond to stimuli on a logarithmic scale. Next, we present evidence from measurements in the literature that some allosteric proteins do operate in a parameter regime that permits logarithmic sensing. Finally, we present examples suggesting that allosteric proteins are indeed used in this capacity: allosteric proteins play a prominent role in systems where fold-change detection has been proposed. This finding suggests a role as logarithmic sensors for the many allosteric proteins across diverse biological processes.


Subject(s)
Algorithms , Models, Theoretical , Protein Conformation , Proteins/chemistry , Signal Transduction , Allosteric Regulation , Animals , Feedback, Physiological , Humans , Proteins/metabolism
14.
Zoology (Jena) ; 119(1): 1-3, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26547837

ABSTRACT

We recently reported a previously unidentified strategy of self-repair in the moon jellyfish Aurelia aurita. Rather than regenerating lost parts, juvenile Aurelia reorganize remaining parts to regain essential body symmetry. This process that we called symmetrization is rapid and frequent, and is not driven by cell proliferation or cell death. Instead, the swimming machinery generates mechanical forces that drive symmetrization. We found evidence for symmetrization across three other species of jellyfish (Chrysaora pacifica, Mastigias sp., and Cotylorhiza tuberculata). We propose reorganization to regain function without recovery of initial morphology as a potentially broad class of self-repair strategy beyond radially symmetrical animals, and discuss the implications of this finding on the evolution of self-repair strategies in animals.


Subject(s)
Regeneration , Scyphozoa/physiology , Animals , Scyphozoa/anatomy & histology , Scyphozoa/growth & development
15.
Proc Natl Acad Sci U S A ; 112(26): E3365-73, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26080418

ABSTRACT

What happens when an animal is injured and loses important structures? Some animals simply heal the wound, whereas others are able to regenerate lost parts. In this study, we report a previously unidentified strategy of self-repair, where moon jellyfish respond to injuries by reorganizing existing parts, and rebuilding essential body symmetry, without regenerating what is lost. Specifically, in response to arm amputation, the young jellyfish of Aurelia aurita rearrange their remaining arms, recenter their manubria, and rebuild their muscular networks, all completed within 12 hours to 4 days. We call this process symmetrization. We find that symmetrization is not driven by external cues, cell proliferation, cell death, and proceeded even when foreign arms were grafted on. Instead, we find that forces generated by the muscular network are essential. Inhibiting pulsation using muscle relaxants completely, and reversibly, blocked symmetrization. Furthermore, we observed that decreasing pulse frequency using muscle relaxants slowed symmetrization, whereas increasing pulse frequency by lowering the magnesium concentration in seawater accelerated symmetrization. A mathematical model that describes the compressive forces from the muscle contraction, within the context of the elastic response from the mesoglea and the ephyra geometry, can recapitulate the recovery of global symmetry. Thus, self-repair in Aurelia proceeds through the reorganization of existing parts, and is driven by forces generated by its own propulsion machinery. We find evidence for symmetrization across species of jellyfish (Chrysaora pacifica, Mastigias sp., and Cotylorhiza tuberculata).


Subject(s)
Cnidaria/physiology , Regeneration , Animals
16.
Proc Natl Acad Sci U S A ; 107(36): 15995-6000, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20729472

ABSTRACT

Recent studies suggest that certain cellular sensory systems display fold-change detection (FCD): a response whose entire shape, including amplitude and duration, depends only on fold changes in input and not on absolute levels. Thus, a step change in input from, for example, level 1 to 2 gives precisely the same dynamical output as a step from level 2 to 4, because the steps have the same fold change. We ask what the benefit of FCD is and show that FCD is necessary and sufficient for sensory search to be independent of multiplying the input field by a scalar. Thus, the FCD search pattern depends only on the spatial profile of the input and not on its amplitude. Such scalar symmetry occurs in a wide range of sensory inputs, such as source strength multiplying diffusing/convecting chemical fields sensed in chemotaxis, ambient light multiplying the contrast field in vision, and protein concentrations multiplying the output in cellular signaling systems. Furthermore, we show that FCD entails two features found across sensory systems, exact adaptation and Weber's law, but that these two features are not sufficient for FCD. Finally, we present a wide class of mechanisms that have FCD, including certain nonlinear feedback and feed-forward loops. We find that bacterial chemotaxis displays feedback within the present class and hence, is expected to show FCD. This can explain experiments in which chemotaxis searches are insensitive to attractant source levels. This study, thus, suggests a connection between properties of biological sensory systems and scalar symmetry stemming from physical properties of their input fields.


Subject(s)
Systems Biology , Adaptation, Physiological
17.
Mol Cell ; 36(5): 872-84, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20005849

ABSTRACT

In response to Wnt stimulation, beta-catenin accumulates and activates target genes. Using modeling and experimental analysis, we found that the level of beta-catenin is sensitive to perturbations in the pathway, such that cellular variation would be expected to alter the signaling outcome. One unusual parameter was robust: the fold-change in beta-catenin level (post-Wnt/pre-Wnt). In Xenopus, dorsal-anterior development and target gene expression are robust to perturbations that alter the final level but leave the fold-change intact. These suggest, first, that despite cellular noise, the cell responds reliably to Wnt stimulation by maintaining a robust fold-change in beta-catenin. Second, the transcriptional machinery downstream of the Wnt pathway does not simply read the beta-catenin level after Wnt stimulation but computes fold-changes in beta-catenin. Analogous to Weber's Law in sensory physiology, some gene transcription networks must respond to fold-changes in signals, rather than absolute levels, which may buffer stochastic, genetic, and environmental variation.


Subject(s)
Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Cell Line, Tumor , Embryo, Nonmammalian/metabolism , Humans , Models, Theoretical , Xenopus
18.
Mol Cell ; 36(5): 894-9, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20005851

ABSTRACT

Many sensory systems (e.g., vision and hearing) show a response that is proportional to the fold-change in the stimulus relative to the background, a feature related to Weber's Law. Recent experiments suggest such a fold-change detection feature in signaling systems in cells: a response that depends on the fold-change in the input signal, and not on its absolute level. It is therefore of interest to find molecular mechanisms of gene regulation that can provide such fold-change detection. Here, we demonstrate theoretically that fold-change detection can be generated by one of the most common network motifs in transcription networks, the incoherent feedforward loop (I1-FFL), in which an activator regulates both a gene and a repressor of the gene. The fold-change detection feature of the I1-FFL applies to the entire shape of the response, including its amplitude and duration, and is valid for a wide range of biochemical parameters.


Subject(s)
Gene Expression Regulation , Models, Theoretical , Signal Transduction
19.
Dev Cell ; 11(2): 263-72, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16890165

ABSTRACT

Quantitative information about the distribution of morphogens is crucial for understanding their effects on cell-fate determination, yet it is difficult to obtain through direct measurements. We have developed a parameter estimation approach for quantifying the spatial distribution of Gurken, a TGFalpha-like EGFR ligand that acts as a morphogen in Drosophila oogenesis. Modeling of Gurken/EGFR system shows that the shape of the Gurken gradient is controlled by a single dimensionless parameter, the Thiele modulus, which reflects the relative importance of ligand diffusion and degradation. By combining the model with genetic alterations of EGFR levels, we have estimated the value of the Thiele modulus in the wild-type egg chamber. This provides a direct characterization of the shape of the Gurken gradient and demonstrates how parameter estimation techniques can be used to quantify morphogen gradients in development.


Subject(s)
Drosophila Proteins/physiology , Drosophila/physiology , Oogenesis/physiology , Signal Transduction/physiology , Transforming Growth Factor alpha/physiology , Animals , Drosophila Proteins/genetics , Ligands , Models, Biological , Protein Transport/physiology , Transforming Growth Factor alpha/genetics
20.
Genesis ; 44(2): 66-74, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16425298

ABSTRACT

The GAL4/UAS system is extensively used for targeted gene expression in Drosophila, but the strength of the GAL4 drivers and their effects on target genes are rarely quantified. Quantitative information about the strength of the perturbations introduced by the GAL4/UAS system would further expand the usefulness of the GAL4/UAS system in studying gene functions and developmental processes. We have developed an assay to determine the relative level of expression for target genes tagged with green fluorescent protein (GFP). Our assay enables the relative quantitation of fluorescent proteins within specific cell types and developmental time windows in living eggs/embryos, and permits the analysis of samples from a broad expression range. We illustrate the assay using a panel of four GAL4 drivers and three UAS responder lines in Drosophila oogenesis, discuss the issues associated with the interpretation of the quantitative data, and correlate our results with the analysis of the GAL4/UAS system at the transcript level. The imaging-based strategy described here can be used to quantify other GAL4 drivers in Drosophila and other organisms.


Subject(s)
Drosophila melanogaster/genetics , Oogenesis/genetics , Saccharomyces cerevisiae Proteins , Transcription Factors , Animals , DNA-Binding Proteins , Female , Fluorometry , Gene Expression Regulation, Developmental , Gene Targeting , Genes, Reporter , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...