Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 44(36): 12203-13, 2005 Sep 13.
Article in English | MEDLINE | ID: mdl-16142919

ABSTRACT

The structural complexity within heparan sulfate has suggested that it contains multiple protein-specific binding sites. To evaluate the selectivity of growth factor binding to heparan sulfate, we conducted a detailed study of the intercompetition of fibroblast growth factor-2 (FGF-2) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) binding to heparan sulfate (HS) on bovine aortic smooth muscle cells. Radioligand binding assays were conducted, and an analytical method was developed for determining the apparent binding constants and numbers of specific and shared binding sites within HS. These studies revealed the presence of two general classes of HS-binding sites for FGF-2 and HB-EGF. The major class (approximately 10(6) sites per cell) was able to bind to either growth factor with relatively low affinity (K(d) = 12 and 44 nM for FGF-2 and HB-EGF, respectively) and was termed "common" binding sites. However, both FGF-2 and HB-EGF also showed specific high affinity (0.6 and 6.1 nM for FGF-2 and HB-EGF, respectively) binding to a minor subset (118,000 and 28,000 sites per cell for FGF-2 and HB-EGF, respectively) of "unique" binding sites, which were unable to bind the other growth factor. These studies indicate that growth factor binding to HS involves multiple binding sites of variable affinity, density, and selectivity. The approach outlined in this study could be applied to aid in the evaluation of the relative biological roles of these selective and nonselective growth factor binding domains within HS.


Subject(s)
Epidermal Growth Factor/metabolism , Fibroblast Growth Factor 2/metabolism , Heparan Sulfate Proteoglycans/metabolism , Binding Sites , Fibroblast Growth Factor 2/genetics , Heparin-binding EGF-like Growth Factor , Humans , Intercellular Signaling Peptides and Proteins , Polysaccharide-Lyases/metabolism , Substrate Specificity
2.
J Biol Chem ; 279(3): 2307-15, 2004 Jan 16.
Article in English | MEDLINE | ID: mdl-14570917

ABSTRACT

Hypoxia is one of the major signals that induces angiogenesis. Hypoxic conditions lead to reduced extracellular pH. Vascular endothelial growth factor (VEGF) binding to endothelial cells and the extracellular matrix (ECM) increases at acidic pH (7.0-5.5). These interactions are dependent on heparan sulfate proteoglycans, but do not depend on the presence of VEGF receptors. Here we report that VEGF(165) and VEGF(121) binding to fibronectin also increased at acidic pH, and that these interactions are further enhanced by the addition of heparin. These results reveal that the accepted non-heparin-binding isoform of VEGF (VEGF(121)) is converted into a heparin-binding growth factor under acidic conditions. Interestingly, we did not observe increased binding of VEGF to collagen type I at acidic pH in the presence or absence of heparin, indicating that this effect is not a general property of all heparin-binding ECM proteins. The high level of VEGF binding at acidic pH was also rapidly reversed as demonstrated by increased rates of VEGF dissociation from fibronectin and fibronectin-heparin matrices as the pH was raised. The VEGF released from fibronectin retained its ability to stimulate the activation of extracellular-regulated kinase 1/2 in endothelial cells. These results suggest that VEGF may be stored in the extracellular matrix via interactions with fibronectin and heparan sulfate in tissues that are in need of vascularization so that it can aid in directing the dynamic process of growth and migration of new blood vessels.


Subject(s)
Extracellular Matrix/metabolism , Fibronectins/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Animals , Cattle , Cells, Cultured , Endothelial Cells/metabolism , Enzyme Activation , Heparin Lyase/pharmacology , Humans , Hydrogen-Ion Concentration , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism
3.
J Biol Chem ; 278(21): 19518-25, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12637571

ABSTRACT

Angiogenesis, the growth of new blood vessels, is regulated by a number of factors, including hypoxia and vascular endothelial growth factor (VEGF). Although the effects of hypoxia have been studied intensely, less attention has been given to other extracellular parameters such as pH. Thus, the present study investigates the consequences of acidic pH on VEGF binding and activity in endothelial cell cultures. We found that the binding of VEGF165 and VEGF121 to endothelial cells increased as the extracellular pH was decreased from 7.5 to 5.5. Binding of VEGF165 and VEGF121 to endothelial extracellular matrix was also increased at acidic pH. These effects were, in part, a reflection of increased heparin binding, because VEGF165 and VEGF121 showed increased retention on heparin-Sepharose at pH 5.5 compared with pH 7.5. Consistent with these findings, soluble heparin competed for VEGF binding to endothelial cells under acidic conditions. However, at neutral pH (7.5) low concentrations of heparin (0.1-1.0 microg/ml) potentiated VEGF binding. Extracellular pH also regulated VEGF activation of the extracellular signal-regulated kinases 1 and 2 (Erk1/2). VEGF165 and VEGF121 activation of Erk1/2 at pH 7.5 peaked after 5 min, whereas at pH 6.5 the peak was shifted to 10 min. At pH 5.5, neither VEGF isoform was able to activate Erk1/2, suggesting that the increased VEGF bound to the cells at low pH was sequestered in a stored state. Therefore, extracellular pH might play an important role in regulating VEGF interactions with cells and the extracellular matrix, which can modulate VEGF activity.


Subject(s)
Endothelial Growth Factors/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lymphokines/metabolism , Animals , Aorta , Binding, Competitive , Cattle , Endothelial Growth Factors/pharmacology , Endothelium, Vascular/metabolism , Enzyme Activation/drug effects , Extracellular Matrix/metabolism , Heparin/administration & dosage , Heparin/metabolism , Humans , Hydrogen-Ion Concentration , Hypoxia , Intercellular Signaling Peptides and Proteins/pharmacology , Iodine Radioisotopes , Lymphokines/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Recombinant Proteins , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...