Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Biol Sci ; 280(1766): 20131381, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23843398

ABSTRACT

Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coupling of the immune response to fever acts at the gene-environment level to promote a robust, highly specific time-dependent anti-viral response that, under viral infection, increases survival. Fish that are not offered a choice of temperatures and that therefore cannot express behavioural fever show decreased survival under viral challenge. This phenomenon provides an underlying explanation for the varied functional responses observed during systemic fever. Given the effects of behavioural fever on survival and the fact that it exists across considerable phylogenetic space, such immunity-environment interactions are likely to be under strong positive selection.


Subject(s)
Behavior, Animal , Immunity, Innate , Temperature , Zebrafish/physiology , Animals , Brain/immunology , Brain/physiology , Brain/virology , RNA, Messenger/metabolism , Signal Transduction , Transcriptome , Up-Regulation , Zebrafish/immunology , Zebrafish/virology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
2.
Integr Comp Biol ; 43(6): 786-93, 2003 Dec.
Article in English | MEDLINE | ID: mdl-21680477

ABSTRACT

Over the last decade, subtractive cloning approaches have been used extensively to isolate genes that are up- or down-regulated under various conditions. These techniques have provided the foundation for many subsequent studies concerning gene function and regulation and, as such, have been valuable tools for many biological fields. Over the past 10 years, we have used different subtractive cloning approaches to isolate genes in fish that are regulated in relation to hormonal stimulation or the stage of ovarian maturation. These include conventional cDNA subtraction followed by library screening, differential display PCR, suppression subtraction hybridization, and more recently, iterative PCR subtraction. We continue to use these techniques for the isolation of new genes involved in physiological processes in fish and bivalve molluscs. Examples that illustrate the use of these different subtractive cloning techniques are described, including where possible the advantages and disadvantages of each. In addition, the use of ancillary methods (e.g., "Reverse Northerns") to facilitate the use of these subtractive approaches are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL