Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(46): 25382-25391, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37939244

ABSTRACT

Production of biodiesel generates glycerol as a 10 wt% byproduct. Therefore, efficient and selective glycerol upgrading is critical for the sustainable production of biodiesel as well as for the production of chemicals from renewable feedstocks. In this study, the photoelectrochemical glycerol oxidation reaction (GOR) was investigated using a nanoporous BiVO4 photoanode in pH 9.3 and pH 2 buffer solutions. In both solutions, glycolaldehyde (GCAD), a C2 species, was the major product, which has never been the major product in any previous electrochemical or photoelectrochemical GOR study. To produce GCAD from the C3 species glycerol, C-C cleavage should occur to produce C2 and C1 species with a 1:1 ratio. Intriguingly, our results show that, during photoelectrochemical GOR on BiVO4, more GCAD is produced than can be explained by simple C-C cleavage, meaning that GCAD is also produced from C-C coupling of two C1 species produced from C-C cleavage. This is equivalent to converting two glycerol molecules to three GCAD molecules, which offers an extraordinary way to maximize GCAD production. To gain further insight into the nature of this unprecedented C-C coupling during GOR, photoelectrochemical oxidation of intermediate oxidation products (glyceraldehyde and 1,3-dihydroxyacetone) and glycerol-1,3-13C2 was compared to that of standard glycerol. Photoelectrochemical GOR was also compared with electrochemical GOR on BiVO4 to interrogate whether light is critical for the observed C-C coupling. Results obtained from comprehensive control experiments revealed critical information about C-C cleavage and C-C coupling during GOR on BiVO4.

2.
Chem Commun (Camb) ; 59(55): 8584-8587, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37340816

ABSTRACT

There has been recent interest about how the rates of concerted proton electron transfer (CPET) are affected by the thermodynamic parameters of intermediates from stepwise PT or ET reactions. Semiclassical arguments have been used to explain these trends despite the importance of quantum mechanical tunneling in CPET reactions. Here we report variable temperature kinetic isotope effect (KIE) data for the reactivity of a terminal Co-oxo complex with C-H bonds. The KIEs for the oxidation of both 9,10-dihydroanthracene (DHA) and fluorene have significant tunneling contributions and fluorene has a largely temperature-insensitive KIE which is inconsistent with semiclassical models. These findings support recent calls for a more detailed understanding of tunneling effects in thermodynamically imbalanced CPET reactions.


Subject(s)
Protons , Transition Elements , Hydrogen/chemistry , Temperature , Oxidation-Reduction , Isotopes , Kinetics
3.
J Am Chem Soc ; 145(10): 5664-5673, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36867838

ABSTRACT

Transition metal-oxo complexes are key intermediates in a variety of oxidative transformations, notably C-H bond activation. The relative rate of C-H bond activation mediated by transition metal-oxo complexes is typically predicated on substrate bond dissociation free energy in cases with a concerted proton-electron transfer (CPET). However, recent work has demonstrated that alternative stepwise thermodynamic contributions such as acidity/basicity or redox potentials of the substrate/metal-oxo may dominate in some cases. In this context, we have found basicity-governed concerted activation of C-H bonds with the terminal CoIII-oxo complex PhB(tBuIm)3CoIIIO. We have been interested in testing the limits of such basicity-dependent reactivity and have synthesized an analogous, more basic complex, PhB(AdIm)3CoIIIO, and studied its reactivity with H-atom donors. This complex displays a higher degree of imbalanced CPET reactivity than PhB(tBuIm)3CoIIIO with C-H substrates, and O-H activation of phenol substrates displays mechanistic crossover to stepwise proton transfer-electron transfer (PTET) reactivity. Analysis of the thermodynamics of proton transfer (PT) and electron transfer (ET) reveals a distinct thermodynamic crossing point between concerted and stepwise reactivity. Furthermore, the relative rates of stepwise and concerted reactivity suggest that maximally imbalanced systems provide the fastest CPET rates up to the point of mechanistic crossover, which results in slower product formation.

4.
Nat Commun ; 13(1): 5848, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195626

ABSTRACT

Many biomass intermediates are polyols and selectively oxidizing only a primary or secondary alcohol group is beneficial for the valorization of these intermediates. For example, production of 1,3-dihydroxyacetone, a highly valuable oxidation product of glycerol, requires selective secondary alcohol oxidation. However, selective secondary alcohol oxidation is challenging due to its steric disadvantage. This study demonstrates that NiOOH, which oxidizes alcohols via two dehydrogenation mechanisms, hydrogen atom transfer and hydride transfer, can convert glycerol to 1,3-dihydroxyacetone with high selectivity when the conditions are controlled to promote hydrogen atom transfer, favoring secondary alcohol oxidation. This rational production of 1,3-dihydroxyacetone achieved by selectively enabling one desired dehydrogenation pathway, without requiring alteration of catalyst composition, demonstrates how comprehensive mechanistic understanding can enable predictive control over selectivity.


Subject(s)
Dihydroxyacetone , Glycerol , Catalysis , Ethanol , Glycerol/metabolism , Hydrogen/metabolism
5.
J Am Chem Soc ; 143(49): 20849-20862, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34856101

ABSTRACT

The selective hydroxylation of aliphatic C-H bonds remains a challenging but broadly useful transformation. Nature has evolved systems that excel at this reaction, exemplified by cytochrome P450 enzymes, which use an iron-oxo intermediate to activate aliphatic C-H bonds with k1 > 1400 s-1 at 4 °C. Many synthetic catalysts have been inspired by these enzymes and are similarly proposed to use transition metal-oxo intermediates. However, most examples of well-characterized transition metal-oxo species are not capable of reacting with strong, aliphatic C-H bonds, resulting in a lack of understanding of what factors facilitate this reactivity. Here, we report the isolation and characterization of a new terminal CoIII-oxo complex, PhB(AdIm)3CoIIIO. Upon oxidation, a transient CoIV-oxo intermediate is generated that is capable of hydroxylating aliphatic C-H bonds with an extrapolated k1 for C-H activation >130 s-1 at 4 °C, comparable to values observed in cytochrome P450 enzymes. Experimental thermodynamic values and DFT analysis demonstrate that, although the initial C-H activation step in this reaction is endergonic, the overall reaction is driven by an extremely exergonic radical rebound step, similar to what has been proposed in cytochrome P450 enzymes. The rapid C-H hydroxylation reactivity displayed in this well-defined system provides insight into how hydroxylation is accomplished by biological systems and similarly potent synthetic oxidants.


Subject(s)
Adamantane/analogs & derivatives , Alcohols/chemical synthesis , Coordination Complexes/chemistry , Oxidants/chemistry , Catalysis , Cobalt/chemistry , Density Functional Theory , Hydroxylation , Ligands , Models, Chemical , Oxidation-Reduction
6.
Chem Sci ; 12(11): 4173-4183, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-34163690

ABSTRACT

Transition metal oxo species are key intermediates for the activation of strong C-H bonds. As such, there has been interest in understanding which structural or electronic parameters of metal oxo complexes determine their reactivity. Factors such as ground state thermodynamics, spin state, steric environment, oxygen radical character, and asynchronicity have all been cited as key contributors, yet there is no consensus on when each of these parameters is significant or the relative magnitude of their effects. Herein, we present a thorough statistical analysis of parameters that have been proposed to influence transition metal oxo mediated C-H activation. We used density functional theory (DFT) to compute parameters for transition metal oxo complexes and analyzed their ability to explain and predict an extensive data set of experimentally determined reaction barriers. We found that, in general, only thermodynamic parameters play a statistically significant role. Notably, however, there are independent and significant contributions from the oxidation potential and basicity of the oxo complexes which suggest a more complicated thermodynamic picture than what has been shown previously.

8.
J Am Chem Soc ; 141(9): 4051-4062, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30739450

ABSTRACT

C-H activation by transition metal oxo complexes is a fundamental reaction in oxidative chemistry carried out by both biological and synthetic systems. This centrality has motivated efforts to understand the patterns and mechanisms of such reactivity. We have therefore thoroughly examined the C-H activation reactivity of the recently synthesized and characterized late transition metal oxo complex PhB ( tBuIm)3CoIIIO. Precise values for the p Ka and BDFEO-H of the conjugates of this complex have been experimentally determined and provide insight into the observed reactivity. The activation parameters for the reaction between this complex and 9,10-dihydroanthracene have also been measured and compared to previous literature examples. Evaluation of the rates of reaction of PhB( tBuIm)3CoIIIO with a variety of hydrogen atom donors demonstrates that the reactivity of this complex is dependent on the p Ka of the substrate of interest rather than the BDEC-H. This observation runs counter to the commonly cited reactivity paradigm for many other transition metal oxo complexes. Experimental and computational analysis of C-H activation reactions by PhB( tBuIm)3CoIIIO reveals that the transition state for these processes contains significant proton transfer character. Nevertheless, additional experiments strongly suggest that the reaction does not occur via a stepwise process, leading to the conclusion that C-H activation by this CoIII-oxo complex proceeds by a p Ka-driven "asynchronous" concerted mechanism. This result supports a new pattern of reactivity that may be applicable to other systems and could result in alternative selectivity for C-H activation reactions mediated by transition metal oxo complexes.

9.
Inorg Chem ; 58(2): 1391-1397, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30589548

ABSTRACT

A previously reported cobalt complex featuring a tetraimidazolyl-substituted pyridine chelate is an active water oxidation electrocatalyst with moderate overpotential at pH 7. While this complex decomposes rapidly to a less-active species under electrocatalytic conditions, detailed electrochemical studies support the agency of an initial molecular catalyst. Cyclic voltammetry measurements confirm that the imidazolyl donors result in a more electron-rich Co center when compared with previous pyridine-based systems. The primary changes in electrocatalytic behavior of the present case are enhanced activity at lower pH and a marked dependence of catalytic activity on pH.

10.
J Am Chem Soc ; 140(41): 13176-13180, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30078327

ABSTRACT

Late transition metal oxo complexes with high d-electron counts have been implicated as intermediates in a wide variety of important catalytic reactions; however, their reactive nature has often significantly limited their study. While some examples of these species have been isolated and characterized, complexes with d-electron counts >4 are exceedingly rare. Here we report that use of a strongly donating tris(imidazol-2-ylidene)borate scaffold enables the isolation of two highly unusual CoIII-oxo complexes which have been thoroughly characterized by a suite of physical techniques including single crystal X-ray diffraction. These complexes display O atom and H atom transfer reactivity and demonstrate that terminal metal oxo complexes with six d-electrons can display strong metal-oxygen bonding and sufficient stability to enable their characterization. The unambiguous assignment of these complexes supports the viability of related species that are frequently invoked, but rarely observed, in the types of catalytic reactions mentioned above. The studies described here change our understanding of the reactivity and bonding in late transition metal oxo complexes and open the door to further study of the properties of this class of elusive and important intermediates.

11.
Angew Chem Int Ed Engl ; 55(21): 6329-33, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27062440

ABSTRACT

Photosynthetic water oxidation in plants occurs at an inorganic calcium manganese oxo cluster, which is known as the oxygen evolving complex (OEC), in photosystem II. Herein, we report a synthetic OEC model based on a molecular manganese vanadium oxide cluster, [Mn4 V4 O17 (OAc)3 ](3-) . The compound is based on a [Mn4 O4 ](6+) cubane core, which catalyzes the homogeneous, visible-light-driven oxidation of water to molecular oxygen and is stabilized by a tripodal [V4 O13 ](6-) polyoxovanadate and three acetate ligands. When combined with the photosensitizer [Ru(bpy)3 ](2+) and the oxidant persulfate, visible-light-driven water oxidation with turnover numbers of approximately 1150 and turnover frequencies of about 1.75 s(-1) is observed. Electrochemical, mass-spectrometric, and spectroscopic studies provide insight into the cluster stability and reactivity. This compound could serve as a model for the molecular structure and reactivity of the OEC and for heterogeneous metal oxide water-oxidation catalysts.

12.
J Am Chem Soc ; 137(26): 8384-7, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26087311

ABSTRACT

Manganese oxides are a highly promising class of water-oxidation catalysts (WOCs), but the optimal MnOx formulation or polymorph is not clear from previous reports in the literature. A complication not limited to MnOx-based WOCs is that such catalysts are routinely evaluated by different methods, ranging from the use of a chemical oxidant such as Ce(4+), photoactive mediators such as [Ru(bpy)3](2+), or electrochemical techniques. Here, we report a systematic study of nine crystalline MnOx materials as WOCs and show that the identity of the "best" catalyst changes, depending on the oxidation method used to probe the catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...